• 算法导论(第三版)Problems2(归并插入排序、数列逆序计算)


    讨论内容不说明,仅提供相应的程序。

    2.1:归并插入排序θ(nlgn)

    void mergeInsertionSort(int a[], int l, int r, int k)
    {
        int m;
        if(r-l+1 > k)
        {
            m = (l + r) / 2;
            mergeInsertionSort(a, l, m, k);
            mergeInsertionSort(a, m+1, r, k);
            merge(a, l, m, r);
        }
        else if(l < r)
            insertSort(a, l, r);
    }
    
    void insertSort(int a[], int l, int r)
    {
        int i, j, key;
        j = l;
        for(i=l+1; i<=r; i++)
            if(a[i] < a[j]) j = i;
        if(j > l)
        {
            key = a[j];
            a[j] = a[l];
            a[l] = key;
        }
        for(i=l+2; i<=r; i++)
        {
            key = a[i];
            for(j=i-1; key<a[j]; j--) a[j+1] = a[j];
            a[j+1] = key;
        }
    }
    
    void merge(int a[], int l, int m, int r)
    {
        int i, j, k;
        int n1 = m - l + 1;
        int n2 = r - m;
        int lArray[n1+1], rArray[n2+1];
        int max = 1000;
    
        for(i=0; i<n1; i++) lArray[i] = a[l+i];
        for(i=0; i<n2; i++) rArray[i] = a[m+i+1];
        lArray[n1] = max;
        rArray[n2] = max;
        i = 0;
        j = 0;
        for(k=l; k<=r; k++)
        {
            if(lArray[i] <= rArray[j])
            {
                a[k] = lArray[i];
                ++i;
            }
            else
            {
                a[k] = rArray[j];
                ++j;
            }
        }
    }
    View Code

    2.2:冒泡排序

    void bubbleSort(int a[], int n)
    {
        int i, j, tmp;
    
        for(i=0; i<n-1; i++)
            for(j=n-1; j>i; j--)
                if(a[j] < a[j-1])
                {
                    tmp = a[j];
                    a[j] = a[j-1];
                    a[j-1] = tmp;
                }
    }
    View Code

    2.3: 多项式计算方法(θ(n))

    int horner(int a[], int x, int n)
    {
        int i, sum=a[n-1];
        for(i=n-2; i>=0; i--) sum = a[i] + x * sum;
        return sum;
    }
    
    int polynomial(int a[], int x, int n)
    {
        int i, xArray[n], sum=0;
        xArray[0] = 1;
        for(i=1; i<n; i++) xArray[i] = x * xArray[i-1];
        for(i=0; i<n; i++) sum = sum + a[i] * xArray[i];
        return sum;
    }
    View Code

    2.4:计算数列的逆序θ(nlgn)

    int mergeCount(int a[], int l, int r)
    {
        int m;
        if(l < r)
        {
            m = (l + r) / 2;
            return mergeCount(a, l, m) + mergeCount(a, m+1, r) + merge(a, l, m, r);
        }
        return 0;
    }
    
    int merge(int a[], int l, int m, int r)
    {
        int i, j, k, cnt=0;
        int n1 = m - l + 1;
        int n2 = r - m;
        int lArray[n1+1], rArray[n2+1];
        int max =10000;
    
        for(i=0; i<n1; i++) lArray[i] = a[l+i];
        for(j=0; j<n2; j++) rArray[j] = a[m+1+j];
        lArray[n1] = max;
        rArray[n2] = max;
        i = 0;
        j = 0;
        for(k=l; k<=r; k++)
            if(lArray[i] <= rArray[j])
            {
                a[k] = lArray[i];
                ++i;
            }
            else
            {
                a[k] = rArray[j];
                cnt += (m + j - k + 1);
                ++j;
            }
        return cnt;
    }
    View Code
  • 相关阅读:
    四、K8S
    三、kubernetes环境搭建(实践)
    二、K8S镜像问题
    一、linux扩展
    十、docker扩展
    二、kubernetes环境搭建
    一、Composer
    一、权限控制-过滤器
    二、kubernetes
    【2019-06-28】客观认知
  • 原文地址:https://www.cnblogs.com/xuanzhang/p/4656731.html
Copyright © 2020-2023  润新知