• PyTorch(二)Intermediate


    import torch 
    import torch.nn as nn
    import torchvision
    import torchvision.transforms as transforms
    
    
    # Device configuration
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    
    # Hyper parameters
    num_epochs = 5
    num_classes = 10
    batch_size = 100
    learning_rate = 0.001
    
    # MNIST dataset
    train_dataset = torchvision.datasets.MNIST(root='../../data/',
                                               train=True, 
                                               transform=transforms.ToTensor(),
                                               download=True)
    
    test_dataset = torchvision.datasets.MNIST(root='../../data/',
                                              train=False, 
                                              transform=transforms.ToTensor())
    
    # Data loader
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                               batch_size=batch_size, 
                                               shuffle=True)
    
    test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                              batch_size=batch_size, 
                                              shuffle=False)
    
    # Convolutional neural network (two convolutional layers)
    class ConvNet(nn.Module):
        def __init__(self, input_channel, num_classes):
            super(ConvNet, self).__init__()
            self.layer1 = nn.Sequential(
                nn.Conv2d(input_channel, 16, kernel_size=5, stride=1, padding=2),
                nn.BatchNorm2d(16),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=2, stride=2)
            ) # 28*28*1 -> 14*14*16
            self.layer2 = nn.Sequential(
                nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
                nn.BatchNorm2d(32),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=2, stride=2)
            ) # 14*14*16 -> 7*7*32
            self.fc = nn.Linear(7*7*32, num_classes)
    
        def forward(self, input):
            out = self.layer1(input)
            out = self.layer2(out)
            out = out.reshape(out.size(0), -1)
            out = self.fc(out)
            return out
    
    
    model = ConvNet(1, num_classes).to(device)
    
    # Construct Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    
    # Train the model
    model.train()
    total_step = len(train_loader)
    for epoch in range(num_epochs):
        for i, (images, labels) in enumerate(train_loader):
            images = images.to(device)
            labels = labels.to(device)
            
            # Forward pass
            outputs = model(images)
            loss = criterion(outputs, labels)
            
            # Backward and optimize
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
            if (i+1) % 100 == 0:
                print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                       .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
    
    # Test the model
    model.eval()  # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance)
    with torch.no_grad():
        correct = 0
        total = 0
        for images, labels in test_loader:
            images = images.to(device)
            labels = labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    
        print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
    
    # Save the model checkpoint
    torch.save(model.state_dict(), 'model.ckpt')
    # ---------------------------------------------------------------------------- #
    # An implementation of https://arxiv.org/pdf/1512.03385.pdf                    #
    # See section 4.2 for the model architecture on CIFAR-10                       #
    # Some part of the code was referenced from below                              #
    # https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py   #
    # ---------------------------------------------------------------------------- #
    
    import torch
    import torch.nn as nn
    import torchvision
    import torchvision.transforms as transforms
    
    
    # Device configuration
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    # Hyper-parameters
    num_epochs = 80
    learning_rate = 0.001
    
    # Image preprocessing modules
    transform = transforms.Compose([
        transforms.Pad(4),
        transforms.RandomHorizontalFlip(),
        transforms.RandomCrop(32),
        transforms.ToTensor()])
    
    # CIFAR-10 dataset
    train_dataset = torchvision.datasets.CIFAR10(root='../../data/',
                                                 train=True, 
                                                 transform=transform,
                                                 download=True)
    
    test_dataset = torchvision.datasets.CIFAR10(root='../../data/',
                                                train=False, 
                                                transform=transforms.ToTensor())
    
    # Data loader
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                               batch_size=100, 
                                               shuffle=True)
    
    test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                              batch_size=100, 
                                              shuffle=False)
    
    # 3x3 convolution
    def conv3x3(in_channels, out_channels, stride=1):
        return nn.Conv2d(in_channels, out_channels, kernel_size=3, 
                         stride=stride, padding=1, bias=False)
    
    # Residual block
    class ResidualBlock(nn.Module):
        def __init__(self, in_channels, out_channels, stride=1, downsample=None):
            super(ResidualBlock, self).__init__()
            self.conv1 = conv3x3(in_channels, out_channels, stride)
            self.bn1 = nn.BatchNorm2d(out_channels)
            self.relu = nn.ReLU(inplace=True)
            self.conv2 = conv3x3(out_channels, out_channels)
            self.bn2 = nn.BatchNorm2d(out_channels)
            self.downsample = downsample
            
        def forward(self, x):
            residual = x
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
            out = self.conv2(out)
            out = self.bn2(out)
            if self.downsample:
                residual = self.downsample(x)
            out += residual
            out = self.relu(out)
            return out
    
    # ResNet
    class ResNet(nn.Module):
        def __init__(self, block, layers, num_classes=10):
            super(ResNet, self).__init__()
            self.in_channels = 16
            self.conv = conv3x3(3, 16)
            self.bn = nn.BatchNorm2d(16)
            self.relu = nn.ReLU(inplace=True)
            self.layer1 = self.make_layer(block, 16, layers[0])
            self.layer2 = self.make_layer(block, 32, layers[0], 2)
            self.layer3 = self.make_layer(block, 64, layers[1], 2)
            self.avg_pool = nn.AvgPool2d(8)
            self.fc = nn.Linear(64, num_classes)
            
        def make_layer(self, block, out_channels, blocks, stride=1):
            downsample = None
            if (stride != 1) or (self.in_channels != out_channels):
                downsample = nn.Sequential(
                    conv3x3(self.in_channels, out_channels, stride=stride),
                    nn.BatchNorm2d(out_channels))
            layers = []
            layers.append(block(self.in_channels, out_channels, stride, downsample))
            self.in_channels = out_channels
            for i in range(1, blocks):
                layers.append(block(out_channels, out_channels))
            return nn.Sequential(*layers)
        
        def forward(self, x):
            out = self.conv(x)
            out = self.bn(out)
            out = self.relu(out)
            out = self.layer1(out)
            out = self.layer2(out)
            out = self.layer3(out)
            out = self.avg_pool(out)
            out = out.view(out.size(0), -1)
            out = self.fc(out)
            return out
        
    model = ResNet(ResidualBlock, [2, 2, 2, 2]).to(device)
    
    
    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    
    # For updating learning rate
    def update_lr(optimizer, lr):    
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr
    
    # Train the model
    total_step = len(train_loader)
    curr_lr = learning_rate
    for epoch in range(num_epochs):
        for i, (images, labels) in enumerate(train_loader):
            images = images.to(device)
            labels = labels.to(device)
            
            # Forward pass
            outputs = model(images)
            loss = criterion(outputs, labels)
            
            # Backward and optimize
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
            if (i+1) % 100 == 0:
                print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
                       .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
    
        # Decay learning rate
        if (epoch+1) % 20 == 0:
            curr_lr /= 3
            update_lr(optimizer, curr_lr)
    
    # Test the model
    model.eval()
    with torch.no_grad():
        correct = 0
        total = 0
        for images, labels in test_loader:
            images = images.to(device)
            labels = labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    
        print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
    
    # Save the model checkpoint
    torch.save(model.state_dict(), 'resnet.ckpt')
    # from torchsummary import summary
    # summary(model, (3, 32, 32))

    # https://github.com/lanpa/tensorboardX
    # from tensorboardX import SummaryWriter
    # dummy_input = torch.rand(1, 3, 32, 32).to(device)
    # with SummaryWriter(comment='residual') as w:
    # w.add_graph(model, (dummy_input, ))
     
    ----------------------------------------------------------------
            Layer (type)               Output Shape         Param #
    ================================================================
                Conv2d-1           [-1, 16, 32, 32]             432
           BatchNorm2d-2           [-1, 16, 32, 32]              32
                  ReLU-3           [-1, 16, 32, 32]               0
                Conv2d-4           [-1, 16, 32, 32]           2,304
           BatchNorm2d-5           [-1, 16, 32, 32]              32
                  ReLU-6           [-1, 16, 32, 32]               0
                Conv2d-7           [-1, 16, 32, 32]           2,304
           BatchNorm2d-8           [-1, 16, 32, 32]              32
                  ReLU-9           [-1, 16, 32, 32]               0
        ResidualBlock-10           [-1, 16, 32, 32]               0
               Conv2d-11           [-1, 16, 32, 32]           2,304
          BatchNorm2d-12           [-1, 16, 32, 32]              32
                 ReLU-13           [-1, 16, 32, 32]               0
               Conv2d-14           [-1, 16, 32, 32]           2,304
          BatchNorm2d-15           [-1, 16, 32, 32]              32
                 ReLU-16           [-1, 16, 32, 32]               0
        ResidualBlock-17           [-1, 16, 32, 32]               0
               Conv2d-18           [-1, 32, 16, 16]           4,608
          BatchNorm2d-19           [-1, 32, 16, 16]              64
                 ReLU-20           [-1, 32, 16, 16]               0
               Conv2d-21           [-1, 32, 16, 16]           9,216
          BatchNorm2d-22           [-1, 32, 16, 16]              64
               Conv2d-23           [-1, 32, 16, 16]           4,608
          BatchNorm2d-24           [-1, 32, 16, 16]              64
                 ReLU-25           [-1, 32, 16, 16]               0
        ResidualBlock-26           [-1, 32, 16, 16]               0
               Conv2d-27           [-1, 32, 16, 16]           9,216
          BatchNorm2d-28           [-1, 32, 16, 16]              64
                 ReLU-29           [-1, 32, 16, 16]               0
               Conv2d-30           [-1, 32, 16, 16]           9,216
          BatchNorm2d-31           [-1, 32, 16, 16]              64
                 ReLU-32           [-1, 32, 16, 16]               0
        ResidualBlock-33           [-1, 32, 16, 16]               0
               Conv2d-34             [-1, 64, 8, 8]          18,432
          BatchNorm2d-35             [-1, 64, 8, 8]             128
                 ReLU-36             [-1, 64, 8, 8]               0
               Conv2d-37             [-1, 64, 8, 8]          36,864
          BatchNorm2d-38             [-1, 64, 8, 8]             128
               Conv2d-39             [-1, 64, 8, 8]          18,432
          BatchNorm2d-40             [-1, 64, 8, 8]             128
                 ReLU-41             [-1, 64, 8, 8]               0
        ResidualBlock-42             [-1, 64, 8, 8]               0
               Conv2d-43             [-1, 64, 8, 8]          36,864
          BatchNorm2d-44             [-1, 64, 8, 8]             128
                 ReLU-45             [-1, 64, 8, 8]               0
               Conv2d-46             [-1, 64, 8, 8]          36,864
          BatchNorm2d-47             [-1, 64, 8, 8]             128
                 ReLU-48             [-1, 64, 8, 8]               0
        ResidualBlock-49             [-1, 64, 8, 8]               0
            AvgPool2d-50             [-1, 64, 1, 1]               0
               Linear-51                   [-1, 10]             650
    ================================================================
    Total params: 195,738
    Trainable params: 195,738
    Non-trainable params: 0
    ----------------------------------------------------------------
    Input size (MB): 0.01
    Forward/backward pass size (MB): 3.63
    Params size (MB): 0.75
    Estimated Total Size (MB): 4.38
    ----------------------------------------------------------------
    import torch 
    import torch.nn as nn
    import torchvision
    import torchvision.transforms as transforms
    
    
    # Device configuration
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    # Hyper-parameters
    sequence_length = 28
    input_size = 28
    hidden_size = 128
    num_layers = 2
    num_classes = 10
    batch_size = 100
    num_epochs = 2
    learning_rate = 0.01
    
    # MNIST dataset
    train_dataset = torchvision.datasets.MNIST(root='../../data/',
                                               train=True, 
                                               transform=transforms.ToTensor(),
                                               download=True)
    
    test_dataset = torchvision.datasets.MNIST(root='../../data/',
                                              train=False, 
                                              transform=transforms.ToTensor())
    
    # Data loader
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                               batch_size=batch_size, 
                                               shuffle=True)
    
    test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                              batch_size=batch_size, 
                                              shuffle=False)
    
    # Recurrent neural network (many-to-one)
    class RNN(nn.Module):
        def __init__(self, input_size, hidden_size, num_layers, num_classes):
            super(RNN, self).__init__()
            self.hidden_size = hidden_size
            self.num_layers = num_layers
            self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
            self.fc = nn.Linear(hidden_size, num_classes)
        
        def forward(self, x):
            # Set initial hidden and cell states 
            h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) 
            c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
            
            # Forward propagate LSTM
            out, _ = self.lstm(x, (h0, c0))  # out: tensor of shape (batch_size, seq_length, hidden_size)
            
            # Decode the hidden state of the last time step
            out = self.fc(out[:, -1, :])
            return out
    
    model = RNN(input_size, hidden_size, num_layers, num_classes).to(device)
    
    
    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    
    # Train the model
    total_step = len(train_loader)
    for epoch in range(num_epochs):
        for i, (images, labels) in enumerate(train_loader):
            images = images.reshape(-1, sequence_length, input_size).to(device)
            labels = labels.to(device)
            
            # Forward pass
            outputs = model(images)
            loss = criterion(outputs, labels)
            
            # Backward and optimize
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
            if (i+1) % 100 == 0:
                print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                       .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
    
    # Test the model
    with torch.no_grad():
        correct = 0
        total = 0
        for images, labels in test_loader:
            images = images.reshape(-1, sequence_length, input_size).to(device)
            labels = labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    
        print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) 
    
    # Save the model checkpoint
    torch.save(model.state_dict(), 'model.ckpt')
    import torch 
    import torch.nn as nn
    import torchvision
    import torchvision.transforms as transforms
    
    
    # Device configuration
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    # Hyper-parameters
    sequence_length = 28
    input_size = 28
    hidden_size = 128
    num_layers = 2
    num_classes = 10
    batch_size = 100
    num_epochs = 2
    learning_rate = 0.003
    
    # MNIST dataset
    train_dataset = torchvision.datasets.MNIST(root='../../data/',
                                               train=True, 
                                               transform=transforms.ToTensor(),
                                               download=True)
    
    test_dataset = torchvision.datasets.MNIST(root='../../data/',
                                              train=False, 
                                              transform=transforms.ToTensor())
    
    # Data loader
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                               batch_size=batch_size, 
                                               shuffle=True)
    
    test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                              batch_size=batch_size, 
                                              shuffle=False)
    
    # Bidirectional recurrent neural network (many-to-one)
    class BiRNN(nn.Module):
        def __init__(self, input_size, hidden_size, num_layers, num_classes):
            super(BiRNN, self).__init__()
            self.hidden_size = hidden_size
            self.num_layers = num_layers
            self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
            self.fc = nn.Linear(hidden_size*2, num_classes)  # 2 for bidirection
        
        def forward(self, x):
            # Set initial states
            h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device) # 2 for bidirection 
            c0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device)
            
            # Forward propagate LSTM
            out, _ = self.lstm(x, (h0, c0))  # out: tensor of shape (batch_size, seq_length, hidden_size*2)
            
            # Decode the hidden state of the last time step
            out = self.fc(out[:, -1, :])
            return out
    
    model = BiRNN(input_size, hidden_size, num_layers, num_classes).to(device)
    
    
    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
        
    # Train the model
    total_step = len(train_loader)
    for epoch in range(num_epochs):
        for i, (images, labels) in enumerate(train_loader):
            images = images.reshape(-1, sequence_length, input_size).to(device)
            labels = labels.to(device)
            
            # Forward pass
            outputs = model(images)
            loss = criterion(outputs, labels)
            
            # Backward and optimize
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
            if (i+1) % 100 == 0:
                print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                       .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
    
    # Test the model
    with torch.no_grad():
        correct = 0
        total = 0
        for images, labels in test_loader:
            images = images.reshape(-1, sequence_length, input_size).to(device)
            labels = labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    
        print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) 
    
    # Save the model checkpoint
    torch.save(model.state_dict(), 'model.ckpt')
    # Some part of the code was referenced from below.
    # https://github.com/pytorch/examples/tree/master/word_language_model 
    import torch
    import torch.nn as nn
    import numpy as np
    from torch.nn.utils import clip_grad_norm
    from data_utils import Dictionary, Corpus
    
    
    # Device configuration
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    # Hyper-parameters
    embed_size = 128
    hidden_size = 1024
    num_layers = 1
    num_epochs = 5
    num_samples = 1000     # number of words to be sampled
    batch_size = 20
    seq_length = 30
    learning_rate = 0.002
    
    # Load "Penn Treebank" dataset
    corpus = Corpus()
    ids = corpus.get_data('data/train.txt', batch_size)
    vocab_size = len(corpus.dictionary)
    num_batches = ids.size(1) // seq_length
    
    
    # RNN based language model
    class RNNLM(nn.Module):
        def __init__(self, vocab_size, embed_size, hidden_size, num_layers):
            super(RNNLM, self).__init__()
            self.embed = nn.Embedding(vocab_size, embed_size)
            self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
            self.linear = nn.Linear(hidden_size, vocab_size)
            
        def forward(self, x, h):
            # Embed word ids to vectors
            x = self.embed(x)
            
            # Forward propagate LSTM
            out, (h, c) = self.lstm(x, h)
            
            # Reshape output to (batch_size*sequence_length, hidden_size)
            out = out.reshape(out.size(0)*out.size(1), out.size(2))
            
            # Decode hidden states of all time steps
            out = self.linear(out)
            return out, (h, c)
    
    model = RNNLM(vocab_size, embed_size, hidden_size, num_layers).to(device)
    
    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    
    # Truncated backpropagation
    def detach(states):
        return [state.detach() for state in states] 
    
    # Train the model
    for epoch in range(num_epochs):
        # Set initial hidden and cell states
        states = (torch.zeros(num_layers, batch_size, hidden_size).to(device),
                  torch.zeros(num_layers, batch_size, hidden_size).to(device))
        
        for i in range(0, ids.size(1) - seq_length, seq_length):
            # Get mini-batch inputs and targets
            inputs = ids[:, i:i+seq_length].to(device)
            targets = ids[:, (i+1):(i+1)+seq_length].to(device)
            
            # Forward pass
            states = detach(states)
            outputs, states = model(inputs, states)
            loss = criterion(outputs, targets.reshape(-1))
            
            # Backward and optimize
            model.zero_grad()
            loss.backward()
            clip_grad_norm(model.parameters(), 0.5)
            optimizer.step()
    
            step = (i+1) // seq_length
            if step % 100 == 0:
                print ('Epoch [{}/{}], Step[{}/{}], Loss: {:.4f}, Perplexity: {:5.2f}'
                       .format(epoch+1, num_epochs, step, num_batches, loss.item(), np.exp(loss.item())))
    
    # Test the model
    with torch.no_grad():
        with open('sample.txt', 'w') as f:
            # Set intial hidden ane cell states
            state = (torch.zeros(num_layers, 1, hidden_size).to(device),
                     torch.zeros(num_layers, 1, hidden_size).to(device))
    
            # Select one word id randomly
            prob = torch.ones(vocab_size)
            input = torch.multinomial(prob, num_samples=1).unsqueeze(1).to(device)
    
            for i in range(num_samples):
                # Forward propagate RNN 
                output, state = model(input, state)
    
                # Sample a word id
                prob = output.exp()
                word_id = torch.multinomial(prob, num_samples=1).item()
    
                # Fill input with sampled word id for the next time step
                input.fill_(word_id)
    
                # File write
                word = corpus.dictionary.idx2word[word_id]
                word = '
    ' if word == '<eos>' else word + ' '
                f.write(word)
    
                if (i+1) % 100 == 0:
                    print('Sampled [{}/{}] words and save to {}'.format(i+1, num_samples, 'sample.txt'))
    
    # Save the model checkpoints
    torch.save(model.state_dict(), 'model.ckpt')
    import torch
    import os
    
    
    class Dictionary(object):
        def __init__(self):
            self.word2idx = {}
            self.idx2word = {}
            self.idx = 0
        
        def add_word(self, word):
            if not word in self.word2idx:
                self.word2idx[word] = self.idx
                self.idx2word[self.idx] = word
                self.idx += 1
        
        def __len__(self):
            return len(self.word2idx)
    
    
    class Corpus(object):
        def __init__(self):
            self.dictionary = Dictionary()
    
        def get_data(self, path, batch_size=20):
            # Add words to the dictionary
            with open(path, 'r') as f:
                tokens = 0
                for line in f:
                    words = line.split() + ['<eos>']
                    tokens += len(words)
                    for word in words: 
                        self.dictionary.add_word(word)  
            
            # Tokenize the file content
            ids = torch.LongTensor(tokens)
            token = 0
            with open(path, 'r') as f:
                for line in f:
                    words = line.split() + ['<eos>']
                    for word in words:
                        ids[token] = self.dictionary.word2idx[word]
                        token += 1
            num_batches = ids.size(0) // batch_size
            ids = ids[:num_batches*batch_size]
            return ids.view(batch_size, -1)
  • 相关阅读:
    (二)Linux进程调度器CPU负载 【转】 sky
    Tmux 使用教程【转】 sky
    Linux kernel中常见的宏整理【转】 sky
    linux内核内存slab,伙伴系统,内存碎片,内存耗尽(OOM)杀手,内存资源控制器memcg,KASAN学习笔记【转】 sky
    格式化log输出【转】 sky
    Linux虚拟化KVMQemu分析(十一)之virtqueue【转】 sky
    Linux内核内核数据类型【转】 sky
    Linux中断管理 (1)Linux中断管理机制【转】 sky
    Linux内存管理 (25)内存sysfs节点解读【转】 sky
    (一)Linux进程调度器基础【转】 sky
  • 原文地址:https://www.cnblogs.com/xuanyuyt/p/9694894.html
Copyright © 2020-2023  润新知