Given an array nums
of n integers where n > 1, return an array output
such that output[i]
is equal to the product of all the elements of nums
except nums[i]
.
Example:
Input:[1,2,3,4]
Output:[24,12,8,6]
Note: Please solve it without division and in O(n).
Follow up:
Could you solve it with constant space complexity? (The output array does not count as extra space for the purpose of space complexity analysis.)
class Solution { public int[] productExceptSelf(int[] nums) { if (nums == null || nums.length == 0) { return nums; } int[] resArr = new int[nums.length]; resArr[0] = 1; for (int i = 1; i < nums.length; i++) { resArr[i] = resArr[i - 1] * nums[i - 1]; } int right = 1; for (int i = nums.length - 1; i >= 0; i--) { resArr[i] *= right; right *= nums[i]; } return resArr; } }
public class Solution { /** * @param nums: an array of integers * @return: the product of all the elements of nums except nums[i]. */ public int[] productExceptSelf(int[] nums) { // write your code here int len = nums.length; int[] prefix = new int[len]; int[] suffix = new int[len]; for (int i = 0; i < len; i++) { if (i == 0) { prefix[i] = nums[i]; continue; } prefix[i] = prefix[i - 1] * nums[i]; } for(int i = len - 1; i >= 0; i--) { if (i == len - 1) { suffix[i] = nums[i]; continue; } suffix[i] = suffix[i + 1] * nums[i]; } int[] res = new int[len]; for (int i = 0; i < len; i++) { if (i == 0) { res[i] = suffix[i + 1]; continue; } if (i == len - 1) { res[i] = prefix[i - 1]; continue; } res[i] = prefix[i - 1] * suffix[i + 1]; } return res; } }