考虑树形 DP。
设 (dp_{i,j}) 表示节点 (i) 染成颜色 (j),(i) 子树内最小的编号总和。
容易得出转移方程:(dp_{i,j}=j+sumlimits_{vin son_i, k ot =j}dp_{v,k})。
由四色定理可知,(j) 最大为 (4),因此数组大小开到 (5) 即可。
#include <bits/stdc++.h>
#define DEBUG fprintf(stderr, "Passing [%s] line %d
", __FUNCTION__, __LINE__)
#define File(x) freopen(x".in","r",stdin); freopen(x".out","w",stdout)
#define DC int T = gi <int> (); while (T--)
using namespace std;
typedef long long LL;
typedef pair <int, int> PII;
typedef pair <int, PII> PIII;
template <typename T>
inline T gi()
{
T f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
}
const int INF = 0x3f3f3f3f, N = 50003, M = N << 1;
int n;
int tot, head[N], ver[M], nxt[M];
int dp[N][5];
inline void add(int u, int v) {ver[++tot] = v, nxt[tot] = head[u], head[u] = tot;}
void dfs(int u, int f)
{
for (int i = 1; i <= 4; i+=1) dp[u][i] = i;
for (int i = head[u]; i; i = nxt[i])
{
int v = ver[i];
if (v == f) continue;
dfs(v, u);
for (int j = 1; j <= 4; j+=1)
{
int mn = INF;
for (int k = 1; k <= 4; k+=1)
if (j != k) mn = min(mn, dp[v][k]);
dp[u][j] += mn;
}
}
}
int main()
{
//File("");
n = gi <int> ();
for (int i = 1; i < n; i+=1)
{
int u = gi <int> (), v = gi <int> ();
add(u, v), add(v, u);
}
dfs(1, 0);
printf("%d
", *min_element(dp[1] + 1, dp[1] + 1 + 4));
return 0;
}