• tensorflow学习笔记12


    训练神经网络2

    import numpy as np
    import tensorflow as tf
    import matplotlib.pyplot as plt
    import input_data
    
    mnist = input_data.read_data_sets('data/',one_hot=True) #one_hot=True编码格式为01编码
    n_hidden_1 = 256
    n_hidden_2 = 128
    n_input = 784
    n_classes = 10
    
    x = tf.placeholder("float",[None,n_input])
    y = tf.placeholder("float",[None,n_classes])
    
    stddev = 0.1
    weights = {
        'w1':tf.Variable(tf.random.normal([n_input,n_hidden_1],stddev=stddev)),
        'w2':tf.Variable(tf.random.normal([n_hidden_1,n_hidden_2],stddev=stddev)),
        'out':tf.Variable(tf.random.normal([n_hidden_2,n_classes],stddev=stddev))
    }
    biases = {
        'bi':tf.Variable(tf.random.normal([n_hidden_1])),
        'b2':tf.Variable(tf.random.normal([n_hidden_2])),
        'out':tf.Variable(tf.random.normal([n_classes]))
    }
    print("NETWORK READY")
    
    def multilayer_perceptron(_X,_weights,_biases):
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(_X,_weights['w1']),_biases['b1']))
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1,_weights['w2']),_biases['b2']))
        return (tf.matmul(layer_2,_weights['out']) + _biases['out'])
    
    pred = multilayer_perceptron(x, weights, biases)
    
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred,y)) #tensorflow中已有的交叉熵函数
    optm = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost)
    corr = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
    accr = tf.reduce_mean(tf.cast(corr,"float"))
    
    init = tf.compat.v1.global_variables_initializer()
    print("FUNCTIONS READY")

    今天出现了报错,还没有解决。

  • 相关阅读:
    邻接表(网)
    邻接表(无向图)
    邻接表(无向图)
    邻接表(有向图)
    邻接表(有向图)
    邻接表(无向图)
    邻接表(有向图)
    邻接表(有向图)
    邻接表(网)
    完美解决循环线性操作倒计时无报错
  • 原文地址:https://www.cnblogs.com/xrj-/p/14460661.html
Copyright © 2020-2023  润新知