• [QUANTAXIS量化分析]羊驼策略1(zz)


    基本原理
    在本策略中,每天按照收益率从小到大对股票池中的所有股票进行排序,起始时买入num_of_stocks只股票,然后每天在整个股票池中选出收益率前num_of_stocks,如果这些股票已持有,则继续持有,如果未持有则买入,并卖掉收益率不是排在前num_of_stocks的股票
    策略实现
    选取市盈率在0~20之间的股票,作为待选股(若用所有股票,计算量过于庞大),一共332支股票

    初始资金100万,时间段为:2016-01-01~2018-05-01

    设置策略参数,初始买入的股票数num_of_stocks,收益率计算所用天数period

    其中收益率=昨天的收盘价/period天之前的收盘价

    将股票池内的股票按照收益率排序,买入收益率最高的num_of_stocks只股票(num_of_stocks默认为10)各1000股。

    之后的每天都将所有股票按收益率排序,如果股票池中有处于收益率前num_of_stocks而未持有的则买入,并卖掉收益率不处于前num_of_stocks的

    (一天操作股票数量为20)运行截图:

    在这里插入图片描述


    (一天操作股票数量为10)运行截图:

    在这里插入图片描述

    # coding: utf-8
    # @author: lin
    # @date: 2018/11/9
    
    
    import QUANTAXIS as QA
    import datetime
    import pandas as pd
    import time
    import matplotlib.pyplot as plt
    import numpy as np
    
    pd.set_option('max_colwidth', 5000)
    pd.set_option('display.max_columns', 5000)
    pd.set_option('display.max_rows', 5000)
    
    
    class Alpaca:
        def __init__(self, start_time, stop_time, n_stock=10, stock_init_cash=1000000, n_days_before=1):
            self.Account = QA.QA_Account()  # 初始化账户
            self.Account.reset_assets(stock_init_cash)  # 初始化账户
            self.Account.account_cookie = 'alpaca'
            self.Broker = QA.QA_BacktestBroker()
            self.time_quantum_list = ['-12-31', '-09-30', '-06-30', '-03-31']
            self.start_time = start_time
            self.stop_time = stop_time
            self.n_days_before = n_days_before
            self.stock_pool = []
            self.data = None
            self.ind = None
            self.n_stock = n_stock
            self.get_stock_pool()
    
        def get_financial_time(self):
            """
            得到此日期前一个财务数据的日期
            :return:
            """
            year = self.start_time[0:4]
            while (True):
                for day in self.time_quantum_list:
                    the_financial_time = year + day
                    if the_financial_time <= self.start_time:
                        return the_financial_time
                year = str(int(year) - 1)
    
        @staticmethod
        def get_assets_eps(stock_code, the_financial_time):
            """
            得到高级财务数据
            :param stock_code:
            :param the_financial_time: 离开始时间最近的财务数据的时间
            :return:
            """
            financial_report = QA.QA_fetch_financial_report(stock_code, the_financial_time)
            if financial_report is not None:
                return financial_report.iloc[0]['totalAssets'], financial_report.iloc[0]['EPS']
            return None, None
    
        def get_stock_pool(self):
            """
            选取哪些股票
            """
            stock_code_list = QA.QA_fetch_stock_list_adv().code.tolist()
            the_financial_time = self.get_financial_time()
            for stock_code in stock_code_list:
                # print(stock_code)
                assets, EPS = self.get_assets_eps(stock_code, the_financial_time)
                if assets is not None and EPS != 0:
                    data = QA.QA_fetch_stock_day_adv(stock_code, self.start_time, self.stop_time)
                    if data is None:
                        continue
                    price = data.to_pd().iloc[0]['close']
                    if 0 < price / EPS < 20:  # 满足条件才添加进行排序
                        # print(price / EPS)
                        self.stock_pool.append(stock_code)
    
        # 成交量因子
        def alpaca(self, data):
            data['yesterday_price'] = 0
            data['previous_n_price'] = 0
            data.reset_index(inplace=True)   # 重置后,索引以数字
            for index, row in data.iterrows():
                yes_index = index - 1
                pre_n_index = index - (self.n_days_before+1)
                if yes_index >= 0:
                    data.loc[index, 'yesterday_price'] = data.loc[yes_index, 'close']
                if pre_n_index >= 0:
                    data.loc[index, 'previous_n_price'] = data.loc[pre_n_index, 'close']
            data['yield_rate'] = 0
            data['yield_rate'] = data['yesterday_price'] / data['previous_n_price']
            data.set_index(['date', 'code'], inplace=True)
            return data
    
        def solve_data(self):
            self.data = QA.QA_fetch_stock_day_adv(self.stock_pool, self.start_time, self.stop_time)
            self.ind = self.data.add_func(self.alpaca)
    
        def run(self):
            self.solve_data()
            for items in self.data.panel_gen:
                today_time = items.index[0][0]
                one_day_data = self.ind.loc[today_time]      # 得到有包含因子的DataFrame
                one_day_data['date'] = items.index[0][0]
                one_day_data.reset_index(inplace=True)
                one_day_data.sort_values(by='yield_rate', axis=0, ascending=False, inplace=True)
                today_stock = list(one_day_data.iloc[0:self.n_stock]['code'])
                one_day_data.set_index(['date', 'code'], inplace=True)
                one_day_data = QA.QA_DataStruct_Stock_day(one_day_data)  # 转换格式,便于计算
                bought_stock_list = list(self.Account.hold.index)
                print("SELL:")
                for stock_code in bought_stock_list:
                    # 如果直接在循环中对bought_stock_list操作,会跳过一些元素
                    if stock_code not in today_stock:
                        try:
                            item = one_day_data.select_day(str(today_time)).select_code(stock_code)
                            order = self.Account.send_order(
                                code=stock_code,
                                time=today_time,
                                amount=self.Account.sell_available.get(stock_code, 0),
                                towards=QA.ORDER_DIRECTION.SELL,
                                price=0,
                                order_model=QA.ORDER_MODEL.MARKET,
                                amount_model=QA.AMOUNT_MODEL.BY_AMOUNT
                            )
                            self.Broker.receive_order(QA.QA_Event(order=order, market_data=item))
                            trade_mes = self.Broker.query_orders(self.Account.account_cookie, 'filled')
                            res = trade_mes.loc[order.account_cookie, order.realorder_id]
                            order.trade(res.trade_id, res.trade_price, res.trade_amount, res.trade_time)
                        except Exception as e:
                            print(e)
                print('BUY:')
                for stock_code in today_stock:
                    try:
                        item = one_day_data.select_day(str(today_time)).select_code(stock_code)
                        order = self.Account.send_order(
                            code=stock_code,
                            time=today_time,
                            amount=1000,
                            towards=QA.ORDER_DIRECTION.BUY,
                            price=0,
                            order_model=QA.ORDER_MODEL.CLOSE,
                            amount_model=QA.AMOUNT_MODEL.BY_AMOUNT
                        )
                        self.Broker.receive_order(QA.QA_Event(order=order, market_data=item))
                        trade_mes = self.Broker.query_orders(self.Account.account_cookie, 'filled')
                        res = trade_mes.loc[order.account_cookie, order.realorder_id]
                        order.trade(res.trade_id, res.trade_price, res.trade_amount, res.trade_time)
                    except Exception as e:
                        print(e)
                self.Account.settle()
            Risk = QA.QA_Risk(self.Account)
            print(Risk.message)
            # plt.show()
            Risk.assets.plot()  # 总资产
            plt.show()
            Risk.benchmark_assets.plot()  # 基准收益的资产
            plt.show()
            Risk.plot_assets_curve()  # 两个合起来的对比图
            plt.show()
            Risk.plot_dailyhold()  # 每只股票每天的买入量
            plt.show()
    
    
    start = time.time()
    sss = Alpaca('2017-01-01', '2018-01-01', 10)
    stop = time.time()
    print(stop - start)
    print(len(sss.stock_pool))
    sss.run()
    stop2 = time.time()
    print(stop2 - stop)

    ————————————————
    版权声明:本文为CSDN博主「Trident_lin」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/weixin_39220714/article/details/85215192

  • 相关阅读:
    Longest Consecutive Sequence
    一步步学习微软InfoPath2010和SP2010--第十四章节--高级选项(5)--脱机表单
    一步步学习微软InfoPath2010和SP2010--第十四章节--高级选项(4)--浏览器和Filler按钮
    一步步学习微软InfoPath2010和SP2010--第十四章节--高级选项(2)--合并表单
    一步步学习微软InfoPath2010和SP2010--第十四章节--高级选项(10)--关键点
    一步步学习微软InfoPath2010和SP2010--第十四章节--高级选项(9)--高级函数
    一步步学习微软InfoPath2010和SP2010--第十四章节--高级选项(8)--默认值
    一步步学习微软InfoPath2010和SP2010--第十四章节--高级选项(3)--重新链接表单
    一步步学习微软InfoPath2010和SP2010--第十四章节--高级选项(1)--InfoPath规则检查器
    SharePoint用REST方式访问查询列表
  • 原文地址:https://www.cnblogs.com/xpvincent/p/14550989.html
Copyright © 2020-2023  润新知