• Netty源码 新连接处理


    上文我们阐述了Netty的Reactor模型。在Reactor模型的第二阶段,Netty会处理各种io事件。对于客户端的各种请求就是在这个阶段去处理的。本文便来分析一个新的连接是如何被处理的。

    代码的入口就从read方法开始。这里的unsafe的类型是NioMessageUnsafe,在服务端启动时就确定下来了。 

    if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
                    unsafe.read();
                    if (!ch.isOpen()) {
                        // Connection already closed - no need to handle write.
                        return;
                    }
                }

     我们省去部分代码,read方法逻辑非常简单。就是一个读出加处理的过程

    public void read() {
                assert eventLoop().inEventLoop();
                final ChannelConfig config = config();
                final ChannelPipeline pipeline = pipeline();
                final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
                allocHandle.reset(config);
    
                boolean closed = false;
                Throwable exception = null;
                    do {
                        //读取消息
                        int localRead = doReadMessages(readBuf);
                        if (localRead == 0) {
                            break;
                        }
                        if (localRead < 0) {
                            closed = true;
                            break;
                        }
                        allocHandle.incMessagesRead(localRead);
                    } while (allocHandle.continueReading());
    
                int size = readBuf.size();
                for (int i = 0; i < size; i ++) {
                    readPending = false;
                    //循环处理消息
                    pipeline.fireChannelRead(readBuf.get(i));
                }
                readBuf.clear();
                allocHandle.readComplete();
                //触发读取完毕事件
                pipeline.fireChannelReadComplete();
        }

     1.读取消息

    protected int doReadMessages(List<Object> buf) throws Exception {
            SocketChannel ch = javaChannel().accept();
    
            try {
                if (ch != null) {
                    buf.add(new NioSocketChannel(this, ch));
                    return 1;
                }
            } catch (Throwable t) {
                logger.warn("Failed to create a new channel from an accepted socket.", t);
    
                try {
                    ch.close();
                } catch (Throwable t2) {
                    logger.warn("Failed to close a socket.", t2);
                }
            }
    
            return 0;
        }

    在doReadMessages首先accept一个新连接,由于在一阶段的时候已经有io事件产生了,所以这里不会等待而是立即接受一个新连接并用SocketChannel表示。

    接着又构造出了一个NioSocketChannel将java的channel封装成netty自己的channel并添加到list中,我们点进去看看。

    public NioSocketChannel(Channel parent, SocketChannel socket) {
            super(parent, socket);
            config = new NioSocketChannelConfig(this, socket.socket());
        }

      

    protected AbstractNioByteChannel(Channel parent, SelectableChannel ch) {
            super(parent, ch, SelectionKey.OP_READ);
        }

      

    protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
            super(parent);
            this.ch = ch;
            this.readInterestOp = readInterestOp;
            try {
                ch.configureBlocking(false);
            } catch (IOException e) {
                try {
                    ch.close();
                } catch (IOException e2) {
                    if (logger.isWarnEnabled()) {
                        logger.warn(
                                "Failed to close a partially initialized socket.", e2);
                    }
                }
    
                throw new ChannelException("Failed to enter non-blocking mode.", e);
            }
        }
    protected AbstractChannel(Channel parent) {
            this.parent = parent;
            id = newId();
            unsafe = newUnsafe();
            pipeline = newChannelPipeline();
        }

    最终我们到了AbstractChannel的类中,发现NioSocketChannel的建立会创建unsafe和pipeline。这里我们看下具体类型

    unsafe的具体类型是由子类io.netty.channel.socket.nio.NioSocketChannel#newUnsafe决定的

    protected AbstractNioUnsafe newUnsafe() {
            return new NioSocketChannelUnsafe();
        }

    pipeline则是默认的DefaultChannelPipeline

    protected DefaultChannelPipeline(Channel channel) {
            this.channel = ObjectUtil.checkNotNull(channel, "channel");
            succeededFuture = new SucceededChannelFuture(channel, null);
            voidPromise =  new VoidChannelPromise(channel, true);
    
            tail = new TailContext(this);
            head = new HeadContext(this);
    
            head.next = tail;
            tail.prev = head;
        }

    这里我们便引出了pipeline的概念,看上述代码便知pipeline的数据结构是一个双向链表。我们也可以把它想象成一个责任链或者更直白点就是流水线。任何连接请求都会通过pipeline处理最终返回到客户端。

    现在显得连接已经封装成channel并添加到list中了,现在我们再看下消息处理

    int size = readBuf.size();
                    for (int i = 0; i < size; i ++) {
                        readPending = false;
                        pipeline.fireChannelRead(readBuf.get(i));
                    }

    2.消息处理

    static void invokeChannelRead(final AbstractChannelHandlerContext next, Object msg) {
            final Object m = next.pipeline.touch(ObjectUtil.checkNotNull(msg, "msg"), next);
            EventExecutor executor = next.executor();
            if (executor.inEventLoop()) {
                next.invokeChannelRead(m);
            } else {
                executor.execute(new Runnable() {
                    @Override
                    public void run() {
                        next.invokeChannelRead(m);
                    }
                });
            }
        }

    消息处理实际就是pipeline链式执行handle的过程。那么对于服务端的channel,他在接受新连接的时候先执行那个handle呢。服务端处理新连接的pipeline中,已经自动添加了一个pipeline处理器 ServerBootstrapAcceptor

    所以我们先看下ServerBootstrapAcceptor的channelRead方法

    public void channelRead(ChannelHandlerContext ctx, Object msg) {
                //1.泛型转换新连接创建的channel
                final Channel child = (Channel) msg;
                //2.设置channel的handler
                child.pipeline().addLast(childHandler);
    
                for (Entry<ChannelOption<?>, Object> e: childOptions) {
                    try {
                        if (!child.config().setOption((ChannelOption<Object>) e.getKey(), e.getValue())) {
                            logger.warn("Unknown channel option: " + e);
                        }
                    } catch (Throwable t) {
                        logger.warn("Failed to set a channel option: " + child, t);
                    }
                }
                for (Entry<AttributeKey<?>, Object> e: childAttrs) {
                    child.attr((AttributeKey<Object>) e.getKey()).set(e.getValue());
                }
                try {
                    //channel绑定到一个raector线程上
                    childGroup.register(child).addListener(new ChannelFutureListener() {
                        @Override
                        public void operationComplete(ChannelFuture future) throws Exception {
                            if (!future.isSuccess()) {
                                forceClose(child, future.cause());
                            }
                        }
                    });
                } catch (Throwable t) {
                    forceClose(child, t);
                }
            }

     1.将刚刚创建的channel泛型转换出来

    2.调用用户代码的childHandler属性,注意,这里只是添加了一个ChannelInitializer,相应的初始化还未运行,

    3.注册该channel,将该channel绑定到一个reactor线程,后续关于这个channel的事件,任务都是由该reactor线程处理。

    现在我们点进注册的代码

    public ChannelFuture register(Channel channel) {
            return next().register(channel);
        }
    public EventLoop next() {
            return (EventLoop) super.next();
        }

    next方法返回的是一个reactor线程,我们看下netty是如何挑选线程的。点击super.next

    public EventExecutor next() {
            return chooser.next();
        }

    这里出现一个chooser代表的是一个选择策略,下面直接上代码了

    chooser = chooserFactory.newChooser(children);
    public EventExecutorChooser newChooser(EventExecutor[] executors) {
            if (isPowerOfTwo(executors.length)) {
                return new PowerOfTowEventExecutorChooser(executors);
            } else {
                return new GenericEventExecutorChooser(executors);
            }
        }

    netty根据线程数量的奇偶性 会选择出不同的选择策略。两者唯一的区别就是一个是与运算,一个是取余

    private static final class PowerOfTowEventExecutorChooser implements EventExecutorChooser {
            private final AtomicInteger idx = new AtomicInteger();
            private final EventExecutor[] executors;
    
            PowerOfTowEventExecutorChooser(EventExecutor[] executors) {
                this.executors = executors;
            }
    
            @Override
            public EventExecutor next() {
                return executors[idx.getAndIncrement() & executors.length - 1];
            }
        }
    
        private static final class GenericEventExecutorChooser implements EventExecutorChooser {
            private final AtomicInteger idx = new AtomicInteger();
            private final EventExecutor[] executors;
    
            GenericEventExecutorChooser(EventExecutor[] executors) {
                this.executors = executors;
            }
    
            @Override
            public EventExecutor next() {
                return executors[Math.abs(idx.getAndIncrement() % executors.length)];
            }
        }

    在我们确定一个reactor线程之后,我们便开始了注册的流程

    io.netty.channel.SingleThreadEventLoop#register(io.netty.channel.Channel)

    public ChannelFuture register(Channel channel) {
            return register(new DefaultChannelPromise(channel, this));
        }

    io.netty.channel.AbstractChannel.AbstractUnsafe#register

    public final void register(EventLoop eventLoop, final ChannelPromise promise) {
                AbstractChannel.this.eventLoop = eventLoop;
    
                if (eventLoop.inEventLoop()) {
                    register0(promise);
                } else {
                    try {
                        eventLoop.execute(new Runnable() {
                            @Override
                            public void run() {
                                register0(promise);
                            }
                        });
                    } catch (Throwable t) {
                        logger.warn(
                                "Force-closing a channel whose registration task was not accepted by an event loop: {}",
                                AbstractChannel.this, t);
                        closeForcibly();
                        closeFuture.setClosed();
                        safeSetFailure(promise, t);
                    }
                }
            }

     注册的核心代码便是register0了

    private void register0(ChannelPromise promise) {
                try {
                    // check if the channel is still open as it could be closed in the mean time when the register
                    // call was outside of the eventLoop
                    if (!promise.setUncancellable() || !ensureOpen(promise)) {
                        return;
                    }
                    boolean firstRegistration = neverRegistered;
                    doRegister();
                    neverRegistered = false;
                    registered = true;
                    pipeline.invokeHandlerAddedIfNeeded();
    
                    safeSetSuccess(promise);
                    pipeline.fireChannelRegistered();
                    if (isActive()) {
                        if (firstRegistration) {
                            pipeline.fireChannelActive();
                        } else if (config().isAutoRead()) {
                            beginRead();
                        }
                    }
                } catch (Throwable t) {
                    // Close the channel directly to avoid FD leak.
                    closeForcibly();
                    closeFuture.setClosed();
                    safeSetFailure(promise, t);
                }
            }
    • doRegister之前在服务端分析时有过讲解,这里真正的吧channel与reactor线程绑定在一起
    • pipeline.invokeHandlerAddedIfNeeded(); 

    为channel添加Handler,这里将添加handler任务包装成Task

    private final class PendingHandlerAddedTask extends PendingHandlerCallback {
    
            PendingHandlerAddedTask(AbstractChannelHandlerContext ctx) {
                super(ctx);
            }
    
            @Override
            public void run() {
                callHandlerAdded0(ctx);
            }
    
            @Override
            void execute() {
                EventExecutor executor = ctx.executor();
                if (executor.inEventLoop()) {
                    callHandlerAdded0(ctx);
                } else {
                    try {
                        executor.execute(this);
                    } catch (RejectedExecutionException e) {
                        if (logger.isWarnEnabled()) {
                            logger.warn(
                                    "Can't invoke handlerAdded() as the EventExecutor {} rejected it, removing handler {}.",
                                    executor, ctx.name(), e);
                        }
                        remove0(ctx);
                        ctx.setRemoved();
                    }
                }
            }
        }

    最终调用io.netty.channel.ChannelInitializer#handlerAdded

    private void callHandlerAdded0(final AbstractChannelHandlerContext ctx) {
                ctx.handler().handlerAdded(ctx);
                ctx.setAddComplete();
        }
    public void handlerAdded(ChannelHandlerContext ctx) throws Exception {
            if (ctx.channel().isRegistered()) {
                initChannel(ctx);
            }
        }

    这也就是我们的用户代码

     

    • pipeline.fireChannelRegistered(); channel注册完之后的回调
    • pipeline.fireChannelActive() channel激活的回调

    到这里其实已经接近尾声了。但是我们的channel目前还是无法使用的。因为他并没有注册他感兴趣的事件。他现在是一个没有梦想的channel。所以我们看下channel激活的具体逻辑

    private void invokeChannelActive() {
            if (invokeHandler()) {
                try {
                    ((ChannelInboundHandler) handler()).channelActive(this);
                } catch (Throwable t) {
                    notifyHandlerException(t);
                }
            } else {
                fireChannelActive();
            }
        }    
    public void channelActive(ChannelHandlerContext ctx) throws Exception {
                ctx.fireChannelActive();
    
                readIfIsAutoRead();
            }
    private void readIfIsAutoRead() {
                if (channel.config().isAutoRead()) {
                    channel.read();
                }
            }
    public Channel read() {
            pipeline.read();
            return this;
        }
    public final ChannelPipeline read() {
            tail.read();
            return this;
        }
    .......        
    protected void doBeginRead() throws Exception {
            // Channel.read() or ChannelHandlerContext.read() was called
            final SelectionKey selectionKey = this.selectionKey;
            if (!selectionKey.isValid()) {
                return;
            }
    
            readPending = true;
    
            final int interestOps = selectionKey.interestOps();
            if ((interestOps & readInterestOp) == 0) {
                selectionKey.interestOps(interestOps | readInterestOp);
            }
        }

    最终在io.netty.channel.nio.AbstractNioChannel#doBeginRead中设置selectionKey对读事件感兴趣。

    以上便是netty对新连接的处理

    参考


     https://www.jianshu.com/p/0242b1d4dd21  【netty源码分析之新连接接入全解析】

  • 相关阅读:
    web&http协议&django初识
    jQuery
    BOM&DOM
    装饰器
    JavaScript
    模块
    面向对象编程
    函数
    CSS
    HTML
  • 原文地址:https://www.cnblogs.com/xmzJava/p/10855423.html
Copyright © 2020-2023  润新知