#!/usr/bin/env python2 # -*- coding: utf-8 -*- import torch import torch.utils.data as Data import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed(1) LR = 0.01 BATCH_SIZE = 32 EPOCH = 12 # 创造的训练数据 x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1) y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size())) plt.scatter(x.numpy(), y.numpy()) plt.show() # 使用上节内容提到的 data loader torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y) loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,) # 默认的 network 形式 class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.hidden = torch.nn.Linear(1, 20) # hidden layer self.predict = torch.nn.Linear(20, 1) # output layer def forward(self, x): x = F.relu(self.hidden(x)) # activation function for hidden layer x = self.predict(x) # linear output return x # 为每个优化器创建一个 net net_SGD = Net() net_Momentum = Net() net_RMSprop = Net() net_Adam = Net() nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam] #不同的优化器 opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR) opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8) opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9) opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99)) optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam] loss_func = torch.nn.MSELoss() losses_his = [[], [], [], []] # 记录 training 时不同神经网络的 loss for epoch in range(EPOCH): print('Epoch: ', epoch) for step, (batch_x, batch_y) in enumerate(loader): b_x = Variable(batch_x) # 务必要用 Variable 包一下 b_y = Variable(batch_y) # 对每个优化器, 优化属于他的神经网络 for net, opt, l_his in zip(nets, optimizers, losses_his): output = net(b_x) # get output for every net loss = loss_func(output, b_y) # compute loss for every net opt.zero_grad() # clear gradients for next train loss.backward() # backpropagation, compute gradients opt.step() # apply gradients l_his.append(loss.data[0]) # loss recoder
下图是各优化器的优化效率对比: