• Matrix Factorization SVD 矩阵分解


    Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge which I have learned before is forgot...(呜呜)

    1.Terminology

    单位矩阵:identity matrix

    特征值:eigenvalues

    特征向量:eigenvectors

    矩阵的秩:rank

    对角矩阵:diagonal matrix

    对角化矩阵:Diagonalizing a Matrix

    矩阵分解:matrix factorization

    奇异值分解:SVD(singular value decomposition)

    2.Basic kowledge

    <1>Eigenvalues and Eigenvectors

    What: The basic equation is , the x is the eigenvector of A and the lamda is the eigenvalue of A.

    How: We can transpose this equation as (I is identity matrix), so we will kown the .  We can calculate the eigenvalues and then get the eigenvectors.

    <2>Diagonalizing a Matrix

    What: (大家都知道,但是特别注意下形如下面的两种矩阵也是对角矩阵)

     

    How: ,lamada is the eigenvalue of A, and the column of S is the eigenvector of A. Like follow:

    <3>rank

    • The Rank and the Row Reduced Form (注:我们知道矩阵秩的定义或者求法有很多种,这里说的是行/列最简形矩阵的行/列数即为矩阵的秩,或者就是矩阵的最大非零r阶子式,则r称为矩阵的秩,即R(A)=r )
    • If the rank of matrix A(n*n) is r, what it's mean. 矩阵A的列向量或者行向量只有r个是非线性相关的,其他的n-r个向量是无价值的。(这个很重要,下面矩阵分解将会用到,自己的感悟不会用英文表达了,用中文。。。)

    <4>singular value

    3. Matrix Factorization

     What:

    (注:这里注意,当k>=m或k>=n且矩阵U或者V是满秩的,矩阵无法分解)

    Why: We can use this to 

    • Image Recovery

    (recovery this image)

    • Recommendation

    (evaluate the ?)

    • and so on

    How: 

    <1>Matrix completation

    (注:在这里我们需要做出假设,即矩阵是低秩。为什么呢?在上面基础概念中我们说到了矩阵秩所代表的意义,那么这里我们假设矩阵是低秩的,则说明矩阵的列向量只有少数几列是真正重要的,其他的都是和这几列线性相关的,那么我们就可以通过这种线性相关来补全残缺的矩阵)

    <2>SVD is one of the methods of matrix factorization, we will introduce this method below.

    We have discussed the Diagonalizing a Matrix,but when A is any m by n matrix, square or rectangular. Its rank is r. We will diagonalize this A, but not by . The eigenvectors in S have three big problems: They are usually not orthogonal, there are not always enough eigenvectors, and  requires A to be square. The singular vectors of A solve all those problems in a perfect way.

    singular value:(这里有一篇博文说的很好,推荐下

    通过上面的方法,能够对矩阵X做出一定的降秩,但是如果这里d与m或者n较为接近,那么降秩的效果就不明显,所以我们使用一种近似的策略,如下:

    这样我们就是实现了将一个矩阵A,经过SVD近似,转换成一个同维度的矩阵A*,但是它的秩远远低于A

    to be continued...

  • 相关阅读:
    bzoj1053(反素数)
    poj1442(对顶堆)
    poj2823(单调队列)
    poj3630(简单tire)
    poj1924(单调栈求最大矩阵)
    最大xor路径(poj3764)
    poj2689
    求n!末尾0的个数
    BigInteger和BigDecimal的基本用法
    大数乘法
  • 原文地址:https://www.cnblogs.com/xlturing/p/3383788.html
Copyright © 2020-2023  润新知