• (转)感受异或的神奇


    转自:https://www.lijinma.com/blog/2014/05/29/amazing-xor/

    异或

    什么是异或?

    Wikipedia的解释:

    在逻辑学中,逻辑算符异或(exclusive or)是对两个运算元的一种逻辑析取类型,符号为 XOR 或 EOR 或 ⊕(编程语言中常用^)。但与一般的逻辑或不同,异或算符的值为真仅当两个运算元中恰有一个的值为真,而另外一个的值为非真。转化为命题,就是:“两者的值不同。”或“有且仅有一个为真。”

    定义:

    1 ⊕ 1 = 0

    0 ⊕ 0 = 0

    1 ⊕ 0 = 1

    0 ⊕ 1 = 1

    真值表:

    YB = 0B = 1
    A = 001
    A = 110

    表达式:

    Y = A’ · B + A · B’

    解释:我使用·作为,我使用+作为,我使用'作为(本来应该使用头上一横,但是太难编辑了,就使用了');

    异或有什么特性?

    根据定义我们很容易获得异或两个特性:

    恒等律:X ⊕ 0 = X 归零律:X ⊕ X = 0

    然后我们使用真值表可以证明:

    (1)交换律

    1
    2
    3
    
    A ⊕ B = A' · B + A · B'
    
    B ⊕ A = B' · A + B · A'

    因为·与+或两个操作满足交换律,所以:

    A ⊕ B = B ⊕ A

    (2)结合律

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    
    (A ⊕ B) ⊕ C
    
    = (A' · B + A · B') ⊕ C
    
    = (A' · B + A · B')' · C + (A' · B + A · B') · C '
    
    = ((A' · B)' · (A · B')')· C + A' · B · C ' + A · B' · C '
    
    = ((A + B') · (A' + B))· C + A' · B · C ' + A · B' · C '
    
    = (A · B + A' · B') · C + A' · B · C ' + A · B' · C '
    
    = A · B · C + A' · B' · C + A' · B · C ' + A · B' · C '
    

    你可以使用同样推导方法得出(请允许我偷懒一下,数学公式敲起来不容易 +_+):

    1
    2
    3
    
    A ⊕ (B ⊕ C)
    
    = A · B · C + A' · B' · C + A' · B · C ' + A · B' · C '

    证明过程中使用了如下几个方法(·与 +或 '否):

    ·与 +或交换律:

    1
    2
    3
    
    A · B = B · A
    
    A + B = B + A

    ·与 +或结合律:

    1
    2
    3
    
    (A · B) · C = A · (B · C)
    
    (A + B) + C = A + (B + C) 

    ·与 +或分配律:

    1
    2
    3
    
    A · (B + C)= A · B + A · C
    
    A + B · C = (A + B) · (A + C)

    摩尔定理:

    1
    2
    3
    
    (A · B)' = A' + B'
    
    (A + B)' = A' · B'

    结论:

    交换律:A ⊕ B = B ⊕ A 结合律:A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C

    有了归零率结合律,我们就可以轻松证明:

    自反:A ⊕ B ⊕ B = A ⊕ 0 = A

    可能这些特性会很顺其自然的理解,但是如果你在解决问题的时候,你可能会忘记异或的这些特性,所以适当的应用可以让我们加深对异或的理解;

    1
    2
    3
    4
    
    A ⊕ 1 = A';
    A ⊕ 0 = A;
    A ⊕ A = 0;
    A ⊕ A' = 1;

    异或有什么神奇之处(应用)?

    说明:以下的的异或全部使用符号^

    可能你已经被乱七八糟的公式和演算搞的有点烦了,不就是很简单的异或运算吗?还解释的那么复杂,嘿嘿,不要着急,打好了基础,你就站在了巨人的肩膀,让我们开始异或的神奇之旅吧;

    (1)快速比较两个值

    先让我们来一个简单的问题;判断两个int数字a,b是否相等,你肯定会想到判断a - b == 0,但是如果判断a ^ b == 0效率将会更高,但是为什么效率高呢?就把这个给你当家庭作业吧,考虑下减法是如何实现的; 让我们看看ipv6中的比较;

    1
    2
    3
    4
    5
    6
    7
    
    static inline int ipv6_addr_equal(const struct in6_addr *a1, const struct in6_addr *a2)
        {
        return (((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
            (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
            (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
            (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0);
        }
    

    (2)在汇编语言中经常用于将变量置零:xor a,a

    (3)我们可以使用异或来使某些特定的位翻转,因为不管是0或者是1与1做异或将得到原值的相反值;

    0 ^ 1 = 1

    1 ^ 1 = 0

    例如:翻转10100001的第6位, 答案:可以将该数与00100000进行按位异或运算;10100001 ^ 00100000 = 10000001

    我们给出一段常用的代码:

    1
    2
    3
    
    unsigned int a, b, mask = 1 << 6;
    a = 0xB1; // 10100001
    b = a ^ mask; /* flip the 6th bit */
    

    (4)我们使用异或来判断一个二进制数中1的数量是奇数还是偶数

    例如:求10100001中1的数量是奇数还是偶数; 答案:1 ^ 0 ^ 1 ^ 0 ^ 0 ^ 0 ^ 0 ^ 1 = 1,结果为1就是奇数个1,结果为0就是偶数个1; 应用:这条性质可用于奇偶校验(Parity Check),比如在串口通信过程中,每个字节的数据都计算一个校验位,数据和校验位一起发送出去,这样接收方可以根据校验位粗略地判断接收到的数据是否有误

    (5)校验和恢复

    校验和恢复主要利用的了异或的特性:IF a ^ b = c THEN a ^ c = b 应用:一个很好的应用实例是RAID5,使用3块磁盘(A、B、C)组成RAID5阵列,当用户写数据时,将数据分成两部分,分别写到磁盘A和磁盘B,A ^ B的结果写到磁盘C;当读取A的数据时,通过B ^ C可以对A的数据做校验,当A盘出错时,通过B ^ C也可以恢复A盘的数据。

    RAID5的实现比上述的描述复杂多了,但是原理就是使用 异或,有兴趣的同学看下RAID5

    (6)经典题目:不使用其他空间,交换两个值

    1
    2
    3
    
    a = a ^ b;
    b = a ^ b; //a ^ b ^ b = a ^ 0 = a;
    a = a ^ b;
    

    这个题目就不用解释了吧,太大众题目了,哈哈,但是非常好的使用的了异或的特性;

    (7)面试题:互换二进制数的奇偶位;

    题目:写一个宏定义,实现的功能是将一个int型的数的奇偶位互换,例如6的2进制为00000110,(从右向左)第一位与第二位互换,第三位与第四位互换,其余都是0不需要交换,得到00001001,输出应该为9;

    思路:我们可以把我们的问题分为三步(难道这也是分治法吗 -。-),第一步,根据原值的偶数位获取到目标值的奇数位,并把不需要的位清零;第二步,根据原值的奇数位获取到目标值的偶数位,并把不需要的位清零;第三步:把上述两个残缺的目标值合并成一个完整的目标值;

    代码为:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    
    //假设 int 占两个字节,16位;
    #include<iostream>
    #include<string>
    using namespace std;
    #define N(n) ((n<<1)&(0xAAAA))|((n>>1)&(0x5555))
    void main(){
        int k = N(6);
        cout << k << endl;
    }
    

    解释: 1.为简化说明,我们以4位二进制码为例,0xAAAA 我们用 1010 代替;0x5555 我们用 0101 代替; 2.(n<<1)&(1010) 把n先左移1位,再与1010做与运算,只保留移位之后的偶数位的值,奇数位全为0,实际上是只保留了n的奇数位的值,并把它们交换到了偶数位上。比如 n = 0110 , n<<1 = 1100, (n<<1) & 1010 = 1000 ; 3.(n>>1)&(0101) 把n右移一位,再与 0101 做与运算,只保留移位之后的奇数位的值,偶数位全为0,实际是只保留n 的偶数位的值,并把它们交换到对应的奇数位上。n = 0110; n>>1 = 0011; (n>>1) & 0101 = 0001; 4.最后做或运算(相加),得到1001。

    (7)最最常出现的面试题:一个整型数组里除了N个数字之外,其他的数字都出现了两次,找出这N个数字;

    比如,从{1, 2, 3, 4, 5, 3, 2, 4, 5}中找出单个的数字: 1

    让我们从最简单的,找一个数字开始;

    题目:(LeetCode 中通过率最高的一道题) Single Number: Given an array of integers, every element appears twice except for one. Find that single one. Note:Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory? 思路: 拿到这个题目,本能的你会使用排序(数字文字我们常常需要排序),排序后可以来判断是否数字成对出现,思路很明显,但是排序的算法上限是 O(nlogn),不符合题目要求;

    学习了强大的异或,我们可以轻松的使用它的特性来完成这道题目: (1)A ^ A = 0; (2)异或满足交换律、结合律; 所有假设有数组:A B C B C D A 使用异或:

    1
    2
    3
    4
    5
    
    A ^ B ^ C ^ B ^ C ^ D ^ A
    = A ^ A ^ B ^ B ^ C ^ C ^ D
    = 0 ^ 0 ^ 0 ^ D
    = 0 ^ D
    = D
    

    是不是很神奇?时间复杂度为O(n),当然是线性的,空间复杂度O(1)

    代码

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    
    class Solution {
    public:
        int singleNumber(int A[], int n) {
            //特殊情况1,2  
            if(n<=0) return -1;
            if(n==1) return A[0];
    
            int result = 0;
            for (int i = 0; i < n; i ++) {
                result = result ^ A[i];
            }
            return result;
        }
    };
    

    接下来让我们增加一些难度:

    题目:一个整型数组里除了个数字之外,其他的数字都出现了两次。请写程序找出这两个只出现一次的数字?

    思路: 第一步:肯定还是像我们上面的解法一样,所有数进行异或,不过最终得到的结果是 a 和 b(假设 a 和 b 是落单的数字)两个值的异或结果 aXORb,没有直接得到 a 和 b 的值;

    第二步:想办法得到 a 或者 b,假设 aXORb 为 00001001(F肯定不为0),根君 aXORb 的值我们发现,值为1的位(比如从右向左第一位)表示在此位上 a 和 b 的值不同;所以,根据这个特点,我们找出来所有第一位为1的数进行异或,得到的就是 a 或者 b;

    第三步:aXORb = a ^ b,假设我们已经找到了 a,根据异或特性,我们知道,b = aXORb ^ a;这样我们就可以找出 b;所以我们只需要循环两次;

    这样我们的时间复杂度是 O(n),空间复杂度是 O(1) 代码

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    
    #include <iostream>
    #include <assert.h>
    using namespace std;
    
    int getFirstOneBit(int num) //输出 num 的低位中的第一个 1 的位置  
    {
        return num & ~(num - 1);  // num 与 -num 相与找到
    }
    
    void findTwo(int *array, int length){
        int aXORb = 0;
        int firstOneBit = 0;
        int a = 0;
        int b = 0;
        for (int i = 0; i < length; i++) {
            aXORb ^= array[i];
        }
        assert(aXORb != 0); //保证题目要求,有两个single的数字
        firstOneBit = getFirstOneBit(aXORb);
        for (int i = 0; i < length; ++i) {
            if(array[i] & firstOneBit) {
                a ^= array[i];
            }
        }
        b = aXORb ^ a;
        cout << "a: " << a << endl;
        cout << "b: " << b << endl;
    }
    
    
    int main()
    {
        int array1[] = {2, 5, 8, 2, 5, 8, 6, 7};
        findTwo(array1, 8);
        return 0;
    }
    

    接下来让我们再增加一些难度:

    题目:一个整型数组里除了个数字之外,其他的数字都出现了两次。请写程序找出这两个只出现一次的数字?

    思路

    第一步:肯定还是像我们上面的解法一样,所有数进行异或,不过最终得到的结果是 a、b 和 c(假设 a、b 和 c 是落单的数字)三个值的异或结果 aXORbXORc,没有直接得到 a、b 和 c 的值;

    第二步:想办法得到 a、b 和 c 中的一个,让偶们把问题简化一下;

    假设一个数组中有3个不同的数字 a、b 和 c,已知 aXORbXORc = a ^ b ^ c ,求 a、b 和 c 。

    思路: 1. 根据题目 aXORbXORc ^ a = b ^ c; aXORbXORc ^ b = a ^ c; aXORbXORc ^ c = a ^ b; 因为:(b ^ c) ^ (a ^ c) ^ (a ^ b) = 0; 所以:(aXORbXORc ^ a) ^ (aXORbXORc ^ b) ^ (aXORbXORc ^ c) = 0;

    1. 下一步是关键: 假设 X ^ Y ^ Z = 0,则 X Y Z 三个数的低位第一位为1的位置两个相同,一个不同; 比如 X: 00001000, Y: 00000100, Z: 00001100 Y和Z的低位第一位都是00000100, X的低位第一位是00001000; 这一步可以使用倒推法证明: 已知:三个数的低位第一位为1的位置有三种情况,一种就是全相同,一种就是两个不同,一个不同,一种就是三个不同; (1)如果是全相同,则 X ^ Y ^ Z != 0 (1 ^ 1 ^ 1 = 1),与前提X ^ Y ^ Z = 0矛盾,不成立; (2)如果三个不同,则 X ^ Y ^ Z != 0 (1 ^ 0 ^ 0 = 1),与前提X ^ Y ^ Z = 0矛盾,不成立; 所以结果是:两个不同,一个不同

    2. (aXORbXORc ^ a) ^ (aXORbXORc ^ b) ^ (aXORbXORc ^ c) = 0; 所以三个数(aXORbXORc ^ a)、(aXORbXORc ^ b) 和 (aXORbXORc ^ c) 的低位第一位为1的位置两个相同,一个不同;那么我们获取到这三个数的低位第一位为1的位置后,进行异或并取低位第一位为1的位置,就可以找到三个中“一个不同”的低位第一位为1的位置,假设这个值为 firstOneBit。

    3. 遍历这三个数(aXORbXORc ^ a)、(aXORbXORc ^ b) 和 (aXORbXORc ^ c),如果发现某个数异或 aXORbXORc 等于 firstOneBit,这个数就是“一个不同”的那个数;

    4. 找到了一个数,剩下的两个数,我们就可以通过上面的方法找出来;

    第三步:完成了第二步的简化题,我们回到我们的问题,我们的问题比简化的问题多了一个成对的干扰数据,我们可以使用异或要去除干扰数据(记住,我们这个题目都是用异或i去除干扰数据的);

    这样我们的时间复杂度还是 O(n),空间复杂度是 O(1)

    代码如下:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    
    #include <iostream>
    #include <assert.h>
    using namespace std;
    
    int getFirstOneBit(int num) //输出 num 的低位中的第一个 1 的位置  
    {
        return num & ~(num - 1);  // num 与 -num 相与找到
    }
    
    void findTwo(int *array, int length){
        int aXORb = 0;
        int firstOneBit = 0;
        int a = 0;
        int b = 0;
        for (int i = 0; i < length; i++) {
            aXORb ^= array[i];
        }
        assert(aXORb != 0); //保证题目要求,有两个single的数字
        firstOneBit = getFirstOneBit(aXORb);
        for (int i = 0; i < length; ++i) {
            if(array[i] & firstOneBit) {
                a ^= array[i];
            }
        }
        b = aXORb ^ a;
        cout << "a: " << a << endl;
        cout << "b: " << b << endl;
    }
    
    int findOne(int *array, int length) {
        int aXORbXORc = 0;
        int c = 0;
        int firstOneBit = 0;
        for (int i = 0; i < length; ++i) {
            aXORbXORc ^= array[i];
        }
    
        for (int i = 0; i < length; ++i) {
            firstOneBit ^= getFirstOneBit(aXORbXORc ^ array[i]); //使用异或会排除掉不相干的元素
        }
        // firstOneBit = getFirstOneBit(a ^ b) ^ getFirstOneBit(a ^ c) ^ getFirstOneBit(b ^ c);
    
        firstOneBit = getFirstOneBit(firstOneBit); //获取到最低位下面要用
    
        for (int i = 0; i < length; ++i) {
            if (getFirstOneBit(aXORbXORc ^ array[i]) == firstOneBit) {
                c ^= array[i]; //使用异或会排除掉不相干的元素
            }
        }
        cout << "c: " << c << endl;
        return c;
    }
    
    int main()
    {
        int array1[] = {2, 5, 8, 2, 5, 8, 6, 7, 1};
        int c = findOne(array1, 9);
        int array2[] = {2, 5, 8, 2, 5, 8, 6, 7, 1, c}; //为了更好重用函数,我重新定义了一个数组让大家理解
        findTwo(array2, 10);
        return 0;
    }
    

    写这篇文档参考了《离散数学与应用》课本,参考了别人多个博客,如果我参考了你的博客,但没有注明出处,请联系告知,有错误的地方,希望可以指出来,也希望大家有更多的补充,非常感谢。

    参考:

    http://zh.wikipedia.org/wiki/%E9%80%BB%E8%BE%91%E5%BC%82%E6%88%96

    http://yjq24.blogbus.com/logs/41863963.html

    http://wzw19191.blog.163.com/blog/static/131135470200992610551971/

    http://kapok.blog.51cto.com/517862/129941

    http://blog.csdn.net/huxian370/article/details/8024416

    http://www.cnblogs.com/Ivony/archive/2009/07/23/1529254.html

    http://blog.chinaunix.net/uid-20937170-id-3407361.html

    http://blog.csdn.net/yfkiss/article/details/11775569

    http://blog.sina.com.cn/s/blog_88c9ddc50101810p.html

    http://blog.csdn.net/pathuang68/article/details/7567027

    http://blog.csdn.net/qingen1/article/details/12656763



    本文链接: https://www.lijinma.com/blog/2014/05/29/amazing-xor/

    Posted by lijinma 

  • 相关阅读:
    [转]Nginx配置信息详解
    [转]浅谈Nginx负载均衡和F5的区别
    [转]MySQL中datetime和timestamp的区别及使用
    理解MyCat分库分表
    理解秒杀系统
    [转]设计模式之桥接模式
    [转]MySQL查询语句执行过程详解
    两步完美解决 androud 模拟器太慢的问题
    android hook 框架 xposed 如何实现挂钩
    android hook 框架 xposed 如何实现注入
  • 原文地址:https://www.cnblogs.com/xj2015/p/7270020.html
Copyright © 2020-2023  润新知