• LightGBM实战


    数据集地址

    基于原生LightGBM的分类

    首先得安装相关的库:pip install lightgbm

    from sklearn.metrics import accuracy_score
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import OneHotEncoder
    import lightgbm as lgb
    import numpy as np
    
    
    # 以分隔符,读取文件,得到的是一个二维列表
    iris = np.loadtxt('iris.data', dtype=str, delimiter=',', unpack=False, encoding='utf-8')
    
    # 前4列是特征
    data = iris[:, :4].astype(np.float)
    # 最后一列是标签,我们将其转换为二维列表
    target = iris[:, -1][:, np.newaxis]
    
    # 对标签进行onehot编码后还原成数字
    enc = OneHotEncoder()
    target = enc.fit_transform(target).astype(np.int).toarray()
    target = [list(oh).index(1) for oh in target]
    
    # 划分训练数据和测试数据
    X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=1)
    
    # 转换为Dataset数据格式
    train_data = lgb.Dataset(X_train, label=y_train)
    validation_data = lgb.Dataset(X_test, label=y_test)
    
    # 参数
    params = {
        'learning_rate': 0.1,
        'lambda_l1': 0.1,
        'lambda_l2': 0.2,
        'max_depth': 4,
        'objective': 'multiclass',  # 目标函数
        'num_class': 3,
    }
    
    # 模型训练
    gbm = lgb.train(params, train_data, valid_sets=[validation_data])
    
    # 模型预测
    y_pred = gbm.predict(X_test)
    y_pred = [list(x).index(max(x)) for x in y_pred]
    print(y_pred)
    
    # 模型评估
    print(accuracy_score(y_test, y_pred))
    

    结果

    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [99] valid_0's multi_logloss: 0.264218
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [100] valid_0's multi_logloss: 0.264481
    [0, 1, 1, 0, 2, 1, 2, 0, 0, 2, 1, 0, 2, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 0, 2, 1, 0, 0, 1, 2]
    0.9666666666666667

    基于sklearn接口的分类

    使用基本参数进行分类

    from sklearn.metrics import accuracy_score
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import OneHotEncoder
    from lightgbm import LGBMClassifier
    from sklearn.externals import joblib
    import numpy as np
    
    
    # 以分隔符,读取文件,得到的是一个二维列表
    iris = np.loadtxt('iris.data', dtype=str, delimiter=',', unpack=False, encoding='utf-8')
    
    # 前4列是特征
    data = iris[:, :4].astype(np.float)
    # 最后一列是标签,我们将其转换为二维列表
    target = iris[:, -1][:, np.newaxis]
    
    # 对标签进行onehot编码后还原成数字
    enc = OneHotEncoder()
    target = enc.fit_transform(target).astype(np.int).toarray()
    target = [list(oh).index(1) for oh in target]
    
    # 划分训练数据和测试数据
    X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=1)
    
    # 模型训练
    gbm = LGBMClassifier(num_leaves=31, learning_rate=0.05, n_estimators=20)
    gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=5)
    
    # 模型存储
    joblib.dump(gbm, 'loan_model.pkl')
    # 模型加载
    gbm = joblib.load('loan_model.pkl')
    
    # 模型预测
    y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration_)
    
    # 模型评估
    print('The accuracy of prediction is:', accuracy_score(y_test, y_pred))
    
    # 特征重要度
    print('Feature importances:', list(gbm.feature_importances_))
    

    结果

    [1] valid_0's multi_logloss: 1.04105
    Training until validation scores don't improve for 5 rounds
    [2] valid_0's multi_logloss: 0.969489
    [3] valid_0's multi_logloss: 0.903964
    [4] valid_0's multi_logloss: 0.845211
    [5] valid_0's multi_logloss: 0.793714
    [6] valid_0's multi_logloss: 0.742919
    [7] valid_0's multi_logloss: 0.698058
    [8] valid_0's multi_logloss: 0.659407
    [9] valid_0's multi_logloss: 0.621686
    [10] valid_0's multi_logloss: 0.588324
    [11] valid_0's multi_logloss: 0.556705
    [12] valid_0's multi_logloss: 0.52607
    [13] valid_0's multi_logloss: 0.501139
    [14] valid_0's multi_logloss: 0.476254
    [15] valid_0's multi_logloss: 0.454358
    [16] valid_0's multi_logloss: 0.433247
    [17] valid_0's multi_logloss: 0.41494
    [18] valid_0's multi_logloss: 0.395876
    [19] valid_0's multi_logloss: 0.378817
    [20] valid_0's multi_logloss: 0.364502
    Did not meet early stopping. Best iteration is:
    [20] valid_0's multi_logloss: 0.364502
    The accuracy of prediction is: 0.9333333333333333
    Feature importances: [12, 15, 129, 56]

    使用参数搜索进行分类

    from sklearn.metrics import accuracy_score
    from sklearn.model_selection import train_test_split, GridSearchCV
    from sklearn.preprocessing import OneHotEncoder
    from lightgbm import LGBMClassifier
    from sklearn.externals import joblib
    import numpy as np
    
    
    # 以分隔符,读取文件,得到的是一个二维列表
    iris = np.loadtxt('iris.data', dtype=str, delimiter=',', unpack=False, encoding='utf-8')
    
    # 前4列是特征
    data = iris[:, :4].astype(np.float)
    # 最后一列是标签,我们将其转换为二维列表
    target = iris[:, -1][:, np.newaxis]
    
    # 对标签进行onehot编码后还原成数字
    enc = OneHotEncoder()
    target = enc.fit_transform(target).astype(np.int).toarray()
    target = [list(oh).index(1) for oh in target]
    
    # 划分训练数据和测试数据
    X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=1)
    
    # 网格搜索,参数优化
    estimator = LGBMClassifier(num_leaves=31)
    param_grid = {
        'learning_rate': [0.01, 0.1, 1],
        'n_estimators': [20, 40]
    }
    gbm = GridSearchCV(estimator, param_grid)
    gbm.fit(X_train, y_train)
    print('Best parameters found by grid search are:', gbm.best_params_)
    

    结果

    Best parameters found by grid search are: {'learning_rate': 0.1, 'n_estimators': 20}

    基于原生LightGBM的回归

    from sklearn.datasets import make_regression
    from sklearn.model_selection import train_test_split
    import lightgbm as lgb
    from sklearn.metrics import mean_absolute_error
    
    X, y = make_regression(n_samples=100, n_features=1, noise=20)
    print(X,y)
    # 切分训练集、测试集
    train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.25, random_state=1)
    
    # 转换为Dataset数据格式
    lgb_train = lgb.Dataset(train_X, train_y)
    lgb_eval = lgb.Dataset(test_X, test_y, reference=lgb_train)
    
    # 参数
    params = {
        'task': 'train',
        'boosting_type': 'gbdt',  # 设置提升类型
        'objective': 'regression',  # 目标函数
        'metric': {'l2', 'auc'},  # 评估函数
        'num_leaves': 31,  # 叶子节点数
        'learning_rate': 0.05,  # 学习速率
        'feature_fraction': 0.9,  # 建树的特征选择比例
        'bagging_fraction': 0.8,  # 建树的样本采样比例
        'bagging_freq': 5,  # k 意味着每 k 次迭代执行bagging
        'verbose': 1  # <0 显示致命的, =0 显示错误 (警告), >0 显示信息
    }
    
    # 调用LightGBM模型,使用训练集数据进行训练(拟合)
    # Add verbosity=2 to print messages while running boosting
    my_model = lgb.train(params, lgb_train, num_boost_round=20, valid_sets=lgb_eval, early_stopping_rounds=5)
    
    # 使用模型对测试集数据进行预测
    predictions = my_model.predict(test_X, num_iteration=my_model.best_iteration)
    
    # 对模型的预测结果进行评判(平均绝对误差)
    print("Mean Absolute Error : " + str(mean_absolute_error(predictions, test_y)))
    

    结果

    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [9] valid_0's auc: 0.873377 valid_0's l2: 1521.21
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [10] valid_0's auc: 0.873377 valid_0's l2: 1448
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [11] valid_0's auc: 0.873377 valid_0's l2: 1394.27
    Early stopping, best iteration is:
    [6] valid_0's auc: 0.873377 valid_0's l2: 1796.72
    Mean Absolute Error : 32.371899328245405

    基于sklearn接口的回归

    from sklearn.datasets import make_regression
    from sklearn.model_selection import train_test_split
    import lightgbm as lgb
    from sklearn.metrics import mean_absolute_error
    
    X, y = make_regression(n_samples=100, n_features=1, noise=20)
    
    # 切分训练集、测试集
    train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.25, random_state=1)
    
    # 调用LightGBM模型,使用训练集数据进行训练(拟合)
    # Add verbosity=2 to print messages while running boosting
    my_model = lgb.LGBMRegressor(objective='regression', num_leaves=31, learning_rate=0.05, n_estimators=20,
                                 verbosity=2)
    
    my_model.fit(train_X, train_y, verbose=False)
    
    # 使用模型对测试集数据进行预测
    predictions = my_model.predict(test_X)
    
    # 对模型的预测结果进行评判(平均绝对误差)
    print("Mean Absolute Error : " + str(mean_absolute_error(predictions, test_y)))
    

    结果

    [LightGBM] [Debug] Dataset::GetMultiBinFromAllFeatures: sparse rate 0.000000
    [LightGBM] [Debug] init for col-wise cost 0.000011 seconds, init for row-wise cost 0.000109 seconds
    [LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000126 seconds.
    You can set force_col_wise=true to remove the overhead.
    [LightGBM] [Info] Total Bins 27
    [LightGBM] [Info] Number of data points in the train set: 75, number of used features: 1
    [LightGBM] [Info] Start training from score 10.744539
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 3 and max_depth = 2
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 3 and max_depth = 2
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 3 and max_depth = 2
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 3 and max_depth = 2
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 2 and max_depth = 1
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 3 and max_depth = 2
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 3 and max_depth = 2
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 2 and max_depth = 1
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 3 and max_depth = 2
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 3 and max_depth = 2
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 3 and max_depth = 2
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 2 and max_depth = 1
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 3 and max_depth = 2
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 3 and max_depth = 2
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 2 and max_depth = 1
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 3 and max_depth = 2
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 3 and max_depth = 2
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 2 and max_depth = 1
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 3 and max_depth = 2
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Debug] Trained a tree with leaves = 3 and max_depth = 2
    Mean Absolute Error : 18.71203698086779

    https://mp.weixin.qq.com/s/75etKylCWXzBGKTplS1qig

  • 相关阅读:
    第二章 成员、变量和常量
    Roman To Integer
    Integer To Roman
    Container With Most Water
    搜狗2015前端工程师笔试题
    从网易与淘宝的font-size思考前端设计稿与工作流
    移动端web app自适应布局探索与总结
    CSS 常用代码
    利用 HTML 和 CSS 实现常见的布局
    CSS 尺寸单位
  • 原文地址:https://www.cnblogs.com/xiximayou/p/14421173.html
Copyright © 2020-2023  润新知