• 从代码角度理解NNLM(A Neural Probabilistic Language Model)


    其框架结构如下所示:

    可分为四 个部分:

    • 词嵌入部分
    • 输入
    • 隐含层
    • 输出层

    我们要明确任务是通过一个文本序列(分词后的序列)去预测下一个字出现的概率,tensorflow代码如下:

    参考:https://github.com/pjlintw/NNLM/blob/master/src/nnlm.py

    import argparse
    import math
    import time
    import numpy as np
    import tensorflow as tf
    from datetime import date
    
    from preprocessing import TextLoader
    
    
    def main():
        parser = argparse.ArgumentParser()
        parser.add_argument('--data_dir', type=str, default='data/',
                            help='data directory containing input.txt')
        parser.add_argument('--batch_size', type=int, default=120,
                            help='minibatch size')
        parser.add_argument('--win_size', type=int, default=5,
                            help='context sequence length')
        parser.add_argument('--hidden_num', type=int, default=100,
                            help='number of hidden layers')
        parser.add_argument('--word_dim', type=int, default=300,
                            help='number of word embedding')
        parser.add_argument('--num_epochs', type=int, default=3,
                            help='number of epochs')
        parser.add_argument('--grad_clip', type=float, default=10.,
                            help='clip gradients at this value')
    
        args = parser.parse_args()
        args_msg = '
    '.join([ arg + ': ' + str(getattr(args, arg)) for arg in vars(args)])
    
    
        data_loader = TextLoader(args.data_dir, args.batch_size, args.win_size)
        args.vocab_size = data_loader.vocab_size
    
        graph = tf.Graph()
        with graph.as_default():
            input_data = tf.placeholder(tf.int64, [args.batch_size, args.win_size])
            targets = tf.placeholder(tf.int64, [args.batch_size, 1])
    
            with tf.variable_scope('nnlm' + 'embedding'):
                embeddings = tf.Variable(tf.random_uniform([args.vocab_size, args.word_dim], -1.0, 1.0))
                embeddings = tf.nn.l2_normalize(embeddings, 1)
    
            with tf.variable_scope('nnlm' + 'weight'):
                weight_h = tf.Variable(tf.truncated_normal([args.win_size * args.word_dim, args.hidden_num],
                                                           stddev=1.0 / math.sqrt(args.hidden_num)))
                softmax_w = tf.Variable(tf.truncated_normal([args.win_size * args.word_dim, args.vocab_size],
                                                            stddev=1.0 / math.sqrt(args.win_size * args.word_dim)))
                softmax_u = tf.Variable(tf.truncated_normal([args.hidden_num, args.vocab_size],
                                                            stddev=1.0 / math.sqrt(args.hidden_num)))
    
                b_1 = tf.Variable(tf.random_normal([args.hidden_num]))
                b_2 = tf.Variable(tf.random_normal([args.vocab_size]))
    
            def infer_output(input_data):
                """
                hidden = tanh(x * H + b_1)
                output = softmax(x * W + hidden * U + b_2)
                """
                input_data_emb = tf.nn.embedding_lookup(embeddings, input_data)
                input_data_emb = tf.reshape(input_data_emb, [-1, args.win_size * args.word_dim])
                hidden = tf.tanh(tf.matmul(input_data_emb, weight_h)) + b_1
                hidden_output = tf.matmul(hidden, softmax_u) + tf.matmul(input_data_emb, softmax_w) + b_2
                output = tf.nn.softmax(hidden_output)
                return output
    
            outputs = infer_output(input_data)
            one_hot_targets = tf.one_hot(tf.squeeze(targets), args.vocab_size, 1.0, 0.0)
            loss = -tf.reduce_mean(tf.reduce_sum(tf.log(outputs) * one_hot_targets, 1))
            # Clip grad.
            optimizer = tf.train.AdagradOptimizer(0.1)
            gvs = optimizer.compute_gradients(loss)
            capped_gvs = [(tf.clip_by_value(grad, -args.grad_clip, args.grad_clip), var) for grad, var in gvs]
            optimizer = optimizer.apply_gradients(capped_gvs)
    
            embeddings_norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
            normalized_embeddings = embeddings / embeddings_norm
        processing_message_lst = list()
        with tf.Session(graph=graph) as sess:
    
            tf.global_variables_initializer().run()
            for e in range(args.num_epochs):
                data_loader.reset_batch_pointer()
                for b in range(data_loader.num_batches):
                    start = time.time()
                    x, y = data_loader.next_batch()
                    feed = {input_data: x, targets: y}
                    train_loss, _ = sess.run([loss, optimizer], feed)
                    end = time.time()
    
                    processing_message = "{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}".format(
                        b, data_loader.num_batches,
                        e, train_loss, end - start)
    
                    print(processing_message)
                    processing_message_lst.append(processing_message)
                    # print("{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}".format(
                    #     b, data_loader.num_batches,
                    #     e, train_loss, end - start))
    
    
                np.save('nnlm_word_embeddings.zh', normalized_embeddings.eval())
    
        # record training processing
        print(start - end)
        local_time = str(time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()))
        with open("{}.txt".format('casdsa'), 'w', encoding='utf-8') as f:
            f.write(local_time)
            f.write(args_msg)
            f.write('
    '.join(processing_message_lst))
    
    
    if __name__ == '__main__':
        main()

    我们主要关注的是模型的部分:

    词嵌入部分:

    embeddings = tf.Variable(tf.random_uniform([args.vocab_size, args.word_dim], -1.0, 1.0))

    生成一个[V, word_dim]的矩阵,其中V表示词汇表,由所有词构成,word_dim表示每个词表示的维度;

    输入部分:

    input_data_emb = tf.nn.embedding_lookup(embeddings, input_data)
    input_data_emb = tf.reshape(input_data_emb, [-1, args.win_size * args.word_dim])

    我们分词后的每一个词是用其在词汇表中对应的索引来表示的,比如:“我 爱 美丽 的 中国”,表示为[8,12,27,112] ,我们对应的标签就是[44],即我们根据前面4个词来预测最后一个词,此时我们得到的是[batchsize,N,word_dim],然后将其调整形状为:[batchsize,N*word_dim];

    隐含层部分:

    hidden = tf.tanh(tf.matmul(input_data_emb, weight_h)) + b_1

    将之前的每个词嵌入拼接起来后做一个映射,再经过一个tanh激活函数;

    输出部分:

    hidden_output = tf.matmul(hidden, softmax_u) + tf.matmul(input_data_emb, softmax_w) + b_2
    output = tf.nn.softmax(hidden_output)

    这里由两个部分组成,一个是隐含层的输出,一个是输入层直接经过映射(跳过隐含层)到输出层的输出,需要注意的是输出层的神经元的个数就是词汇表的大小;

    最后在计算损失的时候是:

    outputs = infer_output(input_data)
    one_hot_targets = tf.one_hot(tf.squeeze(targets), args.vocab_size, 1.0, 0.0)
    loss = -tf.reduce_mean(tf.reduce_sum(tf.log(outputs) * one_hot_targets, 1))

    训练完成之后我们最终需要的是词嵌入,也就是:

    embeddings_norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
    normalized_embeddings = embeddings / embeddings_norm

    下面是pytorch版本的,思路是一样的:

    参考:https://github.com/LeeGitaek/NNLM_Paper_Implementation/blob/master/nnlm_model.py

    # -*- coding: utf-8 -*-
    """NNLM_paper.ipynb
    Automatically generated by Colaboratory.
    Original file is located at
        https://colab.research.google.com/drive/1q6tWzcpFLzU_qvzvkdYiDaxSp--y6nFR
    """
    
    import torch
    import torch.nn as nn
    import torch.optim as optim
    import numpy as np
    from torch.autograd import Variable
    
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    
    torch.manual_seed(777)
    if device == 'cuda':
      torch.cuda.manual_seed_all(777)
    
    sentences = ['i like dog','i love coffee','i hate milk']
    
    word_list = ' '.join(sentences).split()
    word_list = list(set(word_list))
    print(word_list)
    
    word_dict = {w: i for i,w in enumerate(word_list)}
    print('word dict')
    print(word_dict)
    number_dict = {i: w for i, w in enumerate(word_list)}
    print(number_dict)
    n_class = len(word_dict) # number of vocabulary
    
    print(n_class)
    
    #NNLM Parameter
    n_step = 2 # n-1 in paper
    n_hidden = 2 # h in paper
    m = 2       # m in paper
    epochs = 5000
    learning_rate = 0.001
    
    def make_batch(sentences):
        input_batch = []
        target_batch = []
    
        for sen in sentences:
            word = sen.split()
            input = [word_dict[n] for n in word[:-1]]
            target = word_dict[word[-1]]
    
            input_batch.append(input)
            target_batch.append(target)
    
        return input_batch,target_batch
    
    
    #model
    
    class NNLM(nn.Module):
        def __init__(self):
            super(NNLM,self).__init__()
    
            self.C = nn.Embedding(n_class,m)
            self.H = nn.Parameter(torch.randn(n_step * m,n_hidden).type(torch.Tensor))
            self.W = nn.Parameter(torch.randn(n_step * m,n_class).type(torch.Tensor))
            self.d = nn.Parameter(torch.randn(n_hidden).type(torch.Tensor))
            self.U = nn.Parameter(torch.randn(n_hidden,n_class).type(torch.Tensor))
            self.b = nn.Parameter(torch.randn(n_class).type(torch.Tensor))
    
        def forward(self,x):
            x = self.C(x)
            x = x.view(-1,n_step*m) # batch_size,n_step * n_class
            tanh = torch.tanh(self.d + torch.mm(x,self.H))
            output = self.b + torch.mm(x,self.W)+torch.mm(tanh,self.U)
            return output
    model = NNLM()
    
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(),lr=learning_rate)
    
    input_batch , target_batch = make_batch(sentences)
    print(input_batch)
    print('target_batch')
    print(target_batch)
    input_batch = Variable(torch.LongTensor(input_batch))
    target_batch = Variable(torch.LongTensor(target_batch))
    
    for epoch in range(epochs):
        optimizer.zero_grad()
        output = model(input_batch)
    
        loss = criterion(output,target_batch)
        if (epoch+1)%100 == 0:
            print('epoch : {:.4f} , cost = {:.6f}'.format(epoch+1,loss))
    
        loss.backward()
        optimizer.step()
    
    
    predict = model(input_batch).data.max(1,keepdim=True)[1]
    
    print([sen.split()[:2] for sen in sentences],'->',[number_dict[n.item()] for n in predict.squeeze()])
  • 相关阅读:
    TOJ1017: Tour Guide
    tzcacm去年训练的好题的AC代码及题解
    Educational Codeforces Round 40 (Rated for Div. 2)
    AtCoder Regular Contest 092
    浙南联合训练赛20180318
    [Offer收割]编程练习赛50
    牛客练习赛13
    AtCoder Regular Contest 091
    Codeforces Round #470 (rated, Div. 2, based on VK Cup 2018 Round 1)
    csa Round #73 (Div. 2 only)
  • 原文地址:https://www.cnblogs.com/xiximayou/p/14087338.html
Copyright © 2020-2023  润新知