• python实现感知机


    什么是感知机?

    感知机是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。感知机对应于输入空间中将实例划分为正负两类的分离超平面,属于判别模型。

    感知机的定义?

    其图像表示为:

    即找到分离超平面将不同类别的数据区分开来。

    感知机的线性可分性?

    感知机的损失函数?

    感知机学习算法的原始形式?

    举个例子:

    感知机学习的对偶形式?

     举个例子:

    上述解释摘自《统计学习方法》 。

    下面是代码实现:代码来源:https://github.com/eriklindernoren/ML-From-Scratch 

    from __future__ import print_function, division
    import math
    import numpy as np
    
    # Import helper functions
    from mlfromscratch.utils import train_test_split, to_categorical, normalize, accuracy_score
    from mlfromscratch.deep_learning.activation_functions import Sigmoid, ReLU, SoftPlus, LeakyReLU, TanH, ELU
    from mlfromscratch.deep_learning.loss_functions import CrossEntropy, SquareLoss
    from mlfromscratch.utils import Plot
    from mlfromscratch.utils.misc import bar_widgets
    import progressbar
    
    class Perceptron():
        """The Perceptron. One layer neural network classifier.
    
        Parameters:
        -----------
        n_iterations: float
            The number of training iterations the algorithm will tune the weights for.
        activation_function: class
            The activation that shall be used for each neuron.
            Possible choices: Sigmoid, ExpLU, ReLU, LeakyReLU, SoftPlus, TanH
        loss: class
            The loss function used to assess the model's performance.
            Possible choices: SquareLoss, CrossEntropy
        learning_rate: float
            The step length that will be used when updating the weights.
        """
        def __init__(self, n_iterations=20000, activation_function=Sigmoid, loss=SquareLoss, learning_rate=0.01):
            self.n_iterations = n_iterations
            self.learning_rate = learning_rate
            self.loss = loss()
            self.activation_func = activation_function()
            self.progressbar = progressbar.ProgressBar(widgets=bar_widgets)
    
        def fit(self, X, y):
            n_samples, n_features = np.shape(X)
            _, n_outputs = np.shape(y)
    
            # Initialize weights between [-1/sqrt(N), 1/sqrt(N)]
            limit = 1 / math.sqrt(n_features)
            self.W = np.random.uniform(-limit, limit, (n_features, n_outputs))
            self.w0 = np.zeros((1, n_outputs))
    
            for i in self.progressbar(range(self.n_iterations)):
                # Calculate outputs
                linear_output = X.dot(self.W) + self.w0
                y_pred = self.activation_func(linear_output)
                # Calculate the loss gradient w.r.t the input of the activation function
                error_gradient = self.loss.gradient(y, y_pred) * self.activation_func.gradient(linear_output)
                # Calculate the gradient of the loss with respect to each weight
                grad_wrt_w = X.T.dot(error_gradient)
                grad_wrt_w0 = np.sum(error_gradient, axis=0, keepdims=True)
                # Update weights
                self.W  -= self.learning_rate * grad_wrt_w
                self.w0 -= self.learning_rate  * grad_wrt_w0
    
        # Use the trained model to predict labels of X
        def predict(self, X):
            y_pred = self.activation_func(X.dot(self.W) + self.w0)
            return y_pred

    运行主代码:

    from __future__ import print_function
    from sklearn import datasets
    import numpy as np
    
    # Import helper functions
    import sys
    sys.path.append("/content/drive/My Drive/learn/ML-From-Scratch/")
    from mlfromscratch.utils import train_test_split, normalize, to_categorical, accuracy_score
    from mlfromscratch.deep_learning.activation_functions import Sigmoid
    from mlfromscratch.deep_learning.loss_functions import CrossEntropy 
    from mlfromscratch.utils import Plot
    from mlfromscratch.supervised_learning import Perceptron
    
    
    def main():
        data = datasets.load_digits()
        X = normalize(data.data)
        y = data.target
    
        # One-hot encoding of nominal y-values
        y = to_categorical(y)
    
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, seed=1)
    
        # Perceptron
        clf = Perceptron(n_iterations=5000,
            learning_rate=0.001, 
            loss=CrossEntropy,
            activation_function=Sigmoid)
        clf.fit(X_train, y_train)
    
        y_pred = np.argmax(clf.predict(X_test), axis=1)
        y_test = np.argmax(y_test, axis=1)
    
        accuracy = accuracy_score(y_test, y_pred)
    
        print ("Accuracy:", accuracy)
    
        # Reduce dimension to two using PCA and plot the results
        Plot().plot_in_2d(X_test, y_pred, title="Perceptron", accuracy=accuracy, legend_labels=np.unique(y))
    
    
    if __name__ == "__main__":
        main()

    其中相关函数如下:

    def normalize(X, axis=-1, order=2):
        """ Normalize the dataset X """
        l2 = np.atleast_1d(np.linalg.norm(X, order, axis))
        l2[l2 == 0] = 1
        return X / np.expand_dims(l2, axis)
    def train_test_split(X, y, test_size=0.5, shuffle=True, seed=None):
        """ Split the data into train and test sets """
        if shuffle:
            X, y = shuffle_data(X, y, seed)
        # Split the training data from test data in the ratio specified in
        # test_size
        split_i = len(y) - int(len(y) // (1 / test_size))
        X_train, X_test = X[:split_i], X[split_i:]
        y_train, y_test = y[:split_i], y[split_i:]
    
        return X_train, X_test, y_train, y_test
    def shuffle_data(X, y, seed=None):
        """ Random shuffle of the samples in X and y """
        if seed:
            np.random.seed(seed)
        idx = np.arange(X.shape[0])
        np.random.shuffle(idx)
        return X[idx], y[idx]
    class Sigmoid():
        def __call__(self, x):
            return 1 / (1 + np.exp(-x))
    
        def gradient(self, x):
            return self.__call__(x) * (1 - self.__call__(x))
    class CrossEntropy(Loss):
        def __init__(self): pass
    
        def loss(self, y, p):
            # Avoid division by zero
            p = np.clip(p, 1e-15, 1 - 1e-15)
            return - y * np.log(p) - (1 - y) * np.log(1 - p)
    
        def acc(self, y, p):
            return accuracy_score(np.argmax(y, axis=1), np.argmax(p, axis=1))
    
        def gradient(self, y, p):
            # Avoid division by zero
            p = np.clip(p, 1e-15, 1 - 1e-15)
            return - (y / p) + (1 - y) / (1 - p)

    运行结果:

    Training: 100% [------------------------------------------------] Time: 0:00:09 Accuracy: 0.9527824620573356

  • 相关阅读:
    4个常用的HTTP安全头部
    Content Security Policy 入门教程
    前端安全配置之Content-Security-Policy(csp)
    关于setConnectTimeout和setReadTimeout的问题
    Maven库下载很慢解决办法,利用中央仓库
    ibatis Order By注入问题
    Web系统常见安全漏洞及解决方案-SQL盲注
    玩得一手好注入之order by排序篇
    python接口自动化29-requests-html支持JavaScript渲染页面
    python接口自动化28-requests-html爬虫框架
  • 原文地址:https://www.cnblogs.com/xiximayou/p/12871525.html
Copyright © 2020-2023  润新知