• 【python实现卷积神经网络】开始训练


    代码来源:https://github.com/eriklindernoren/ML-From-Scratch

    卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html

    激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus):https://www.cnblogs.com/xiximayou/p/12713081.html

    损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html

    优化器的实现(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html

    卷积层反向传播过程:https://www.cnblogs.com/xiximayou/p/12713930.html

    全连接层实现:https://www.cnblogs.com/xiximayou/p/12720017.html

    批量归一化层实现:https://www.cnblogs.com/xiximayou/p/12720211.html

    池化层实现:https://www.cnblogs.com/xiximayou/p/12720324.html

    padding2D实现:https://www.cnblogs.com/xiximayou/p/12720454.html

    Flatten层实现:https://www.cnblogs.com/xiximayou/p/12720518.html

    上采样层UpSampling2D实现:https://www.cnblogs.com/xiximayou/p/12720558.html

    Dropout层实现:https://www.cnblogs.com/xiximayou/p/12720589.html

    激活层实现:https://www.cnblogs.com/xiximayou/p/12720622.html

    定义训练和测试过程:https://www.cnblogs.com/xiximayou/p/12725873.html

    代码在mlfromscratch/examples/convolutional_neural_network.py 中:

    from __future__ import print_function
    from sklearn import datasets
    import matplotlib.pyplot as plt
    import math
    import numpy as np
    
    # Import helper functions
    from mlfromscratch.deep_learning import NeuralNetwork
    from mlfromscratch.utils import train_test_split, to_categorical, normalize
    from mlfromscratch.utils import get_random_subsets, shuffle_data, Plot
    from mlfromscratch.utils.data_operation import accuracy_score
    from mlfromscratch.deep_learning.optimizers import StochasticGradientDescent, Adam, RMSprop, Adagrad, Adadelta
    from mlfromscratch.deep_learning.loss_functions import CrossEntropy
    from mlfromscratch.utils.misc import bar_widgets
    from mlfromscratch.deep_learning.layers import Dense, Dropout, Conv2D, Flatten, Activation, MaxPooling2D
    from mlfromscratch.deep_learning.layers import AveragePooling2D, ZeroPadding2D, BatchNormalization, RNN
    
    
    
    def main():
    
        #----------
        # Conv Net
        #----------
    
        optimizer = Adam()
    
        data = datasets.load_digits()
        X = data.data
        y = data.target
    
        # Convert to one-hot encoding
        y = to_categorical(y.astype("int"))
    
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, seed=1)
    
        # Reshape X to (n_samples, channels, height, width)
        X_train = X_train.reshape((-1,1,8,8))
        X_test = X_test.reshape((-1,1,8,8))
    
        clf = NeuralNetwork(optimizer=optimizer,
                            loss=CrossEntropy,
                            validation_data=(X_test, y_test))
    
        clf.add(Conv2D(n_filters=16, filter_shape=(3,3), stride=1, input_shape=(1,8,8), padding='same'))
        clf.add(Activation('relu'))
        clf.add(Dropout(0.25))
        clf.add(BatchNormalization())
        clf.add(Conv2D(n_filters=32, filter_shape=(3,3), stride=1, padding='same'))
        clf.add(Activation('relu'))
        clf.add(Dropout(0.25))
        clf.add(BatchNormalization())
        clf.add(Flatten())
        clf.add(Dense(256))
        clf.add(Activation('relu'))
        clf.add(Dropout(0.4))
        clf.add(BatchNormalization())
        clf.add(Dense(10))
        clf.add(Activation('softmax'))
    
        print ()
        clf.summary(name="ConvNet")
    
        train_err, val_err = clf.fit(X_train, y_train, n_epochs=50, batch_size=256)
    
        # Training and validation error plot
        n = len(train_err)
        training, = plt.plot(range(n), train_err, label="Training Error")
        validation, = plt.plot(range(n), val_err, label="Validation Error")
        plt.legend(handles=[training, validation])
        plt.title("Error Plot")
        plt.ylabel('Error')
        plt.xlabel('Iterations')
        plt.show()
    
        _, accuracy = clf.test_on_batch(X_test, y_test)
        print ("Accuracy:", accuracy)
    
    
        y_pred = np.argmax(clf.predict(X_test), axis=1)
        X_test = X_test.reshape(-1, 8*8)
        # Reduce dimension to 2D using PCA and plot the results
        Plot().plot_in_2d(X_test, y_pred, title="Convolutional Neural Network", accuracy=accuracy, legend_labels=range(10))
    
    if __name__ == "__main__":
        main()

    我们还是一步步进行分析:

    1、优化器使用Adam()

    2、数据集使用的是sklearn.datasets中的手写数字,其部分数据如下:

    (1797, 64)
    (1797,)
    [[ 0.  0.  5. 13.  9.  1.  0.  0.  0.  0. 13. 15. 10. 15.  5.  0.  0.  3.
      15.  2.  0. 11.  8.  0.  0.  4. 12.  0.  0.  8.  8.  0.  0.  5.  8.  0.
       0.  9.  8.  0.  0.  4. 11.  0.  1. 12.  7.  0.  0.  2. 14.  5. 10. 12.
       0.  0.  0.  0.  6. 13. 10.  0.  0.  0.]
     [ 0.  0.  0. 12. 13.  5.  0.  0.  0.  0.  0. 11. 16.  9.  0.  0.  0.  0.
       3. 15. 16.  6.  0.  0.  0.  7. 15. 16. 16.  2.  0.  0.  0.  0.  1. 16.
      16.  3.  0.  0.  0.  0.  1. 16. 16.  6.  0.  0.  0.  0.  1. 16. 16.  6.
       0.  0.  0.  0.  0. 11. 16. 10.  0.  0.]
     [ 0.  0.  0.  4. 15. 12.  0.  0.  0.  0.  3. 16. 15. 14.  0.  0.  0.  0.
       8. 13.  8. 16.  0.  0.  0.  0.  1.  6. 15. 11.  0.  0.  0.  1.  8. 13.
      15.  1.  0.  0.  0.  9. 16. 16.  5.  0.  0.  0.  0.  3. 13. 16. 16. 11.
       5.  0.  0.  0.  0.  3. 11. 16.  9.  0.]
     [ 0.  0.  7. 15. 13.  1.  0.  0.  0.  8. 13.  6. 15.  4.  0.  0.  0.  2.
       1. 13. 13.  0.  0.  0.  0.  0.  2. 15. 11.  1.  0.  0.  0.  0.  0.  1.
      12. 12.  1.  0.  0.  0.  0.  0.  1. 10.  8.  0.  0.  0.  8.  4.  5. 14.
       9.  0.  0.  0.  7. 13. 13.  9.  0.  0.]
     [ 0.  0.  0.  1. 11.  0.  0.  0.  0.  0.  0.  7.  8.  0.  0.  0.  0.  0.
       1. 13.  6.  2.  2.  0.  0.  0.  7. 15.  0.  9.  8.  0.  0.  5. 16. 10.
       0. 16.  6.  0.  0.  4. 15. 16. 13. 16.  1.  0.  0.  0.  0.  3. 15. 10.
       0.  0.  0.  0.  0.  2. 16.  4.  0.  0.]
     [ 0.  0. 12. 10.  0.  0.  0.  0.  0.  0. 14. 16. 16. 14.  0.  0.  0.  0.
      13. 16. 15. 10.  1.  0.  0.  0. 11. 16. 16.  7.  0.  0.  0.  0.  0.  4.
       7. 16.  7.  0.  0.  0.  0.  0.  4. 16.  9.  0.  0.  0.  5.  4. 12. 16.
       4.  0.  0.  0.  9. 16. 16. 10.  0.  0.]
     [ 0.  0.  0. 12. 13.  0.  0.  0.  0.  0.  5. 16.  8.  0.  0.  0.  0.  0.
      13. 16.  3.  0.  0.  0.  0.  0. 14. 13.  0.  0.  0.  0.  0.  0. 15. 12.
       7.  2.  0.  0.  0.  0. 13. 16. 13. 16.  3.  0.  0.  0.  7. 16. 11. 15.
       8.  0.  0.  0.  1.  9. 15. 11.  3.  0.]
     [ 0.  0.  7.  8. 13. 16. 15.  1.  0.  0.  7.  7.  4. 11. 12.  0.  0.  0.
       0.  0.  8. 13.  1.  0.  0.  4.  8.  8. 15. 15.  6.  0.  0.  2. 11. 15.
      15.  4.  0.  0.  0.  0.  0. 16.  5.  0.  0.  0.  0.  0.  9. 15.  1.  0.
       0.  0.  0.  0. 13.  5.  0.  0.  0.  0.]
     [ 0.  0.  9. 14.  8.  1.  0.  0.  0.  0. 12. 14. 14. 12.  0.  0.  0.  0.
       9. 10.  0. 15.  4.  0.  0.  0.  3. 16. 12. 14.  2.  0.  0.  0.  4. 16.
      16.  2.  0.  0.  0.  3. 16.  8. 10. 13.  2.  0.  0.  1. 15.  1.  3. 16.
       8.  0.  0.  0. 11. 16. 15. 11.  1.  0.]
     [ 0.  0. 11. 12.  0.  0.  0.  0.  0.  2. 16. 16. 16. 13.  0.  0.  0.  3.
      16. 12. 10. 14.  0.  0.  0.  1. 16.  1. 12. 15.  0.  0.  0.  0. 13. 16.
       9. 15.  2.  0.  0.  0.  0.  3.  0.  9. 11.  0.  0.  0.  0.  0.  9. 15.
       4.  0.  0.  0.  9. 12. 13.  3.  0.  0.]]
    [0 1 2 3 4 5 6 7 8 9]

    3、接着有一个to_categorical()函数,在mlfromscratch.utils下的data_manipulation.py中:

    def to_categorical(x, n_col=None):
        """ One-hot encoding of nominal values """
        if not n_col:
            n_col = np.amax(x) + 1
        one_hot = np.zeros((x.shape[0], n_col))
        one_hot[np.arange(x.shape[0]), x] = 1
        return one_hot

    用于将标签转换为one-hot编码。

    4、划分训练集和测试集:train_test_split(),在mlfromscratch.utils下的data_manipulation.py中:

    def train_test_split(X, y, test_size=0.5, shuffle=True, seed=None):
        """ Split the data into train and test sets """
        if shuffle:
            X, y = shuffle_data(X, y, seed)
        # Split the training data from test data in the ratio specified in
        # test_size
        split_i = len(y) - int(len(y) // (1 / test_size))
        X_train, X_test = X[:split_i], X[split_i:]
        y_train, y_test = y[:split_i], y[split_i:]
    
        return X_train, X_test, y_train, y_test

    5、由于卷积神经网络的输入是[batchsize,channel,wheight,width]的维度,因此要将原始数据进行转换,即将(1797,64)转换为(1797,1,8,8)格式的数据。这里batchsize就是样本的数量。

    6、定义卷积神经网络的训练和测试过程:包括优化器、损失函数、测试数据

    7、定义模型结构

    8、输出模型每层的类型、参数数量以及输出大小

    9、将数据输入到模型中,设置epochs的大小以及batch_size的大小

    10、计算训练和测试的错误,并绘制成图

    11、计算准确率

    12、绘制测试集中每一类预测的结果,这里有一个plot_in_2d()函数,位于mlfromscratch.utils下的misc.py中

     # Plot the dataset X and the corresponding labels y in 2D using PCA.
        def plot_in_2d(self, X, y=None, title=None, accuracy=None, legend_labels=None):
            X_transformed = self._transform(X, dim=2)
            x1 = X_transformed[:, 0]
            x2 = X_transformed[:, 1]
            class_distr = []
    
            y = np.array(y).astype(int)
    
            colors = [self.cmap(i) for i in np.linspace(0, 1, len(np.unique(y)))]
    
            # Plot the different class distributions
            for i, l in enumerate(np.unique(y)):
                _x1 = x1[y == l]
                _x2 = x2[y == l]
                _y = y[y == l]
                class_distr.append(plt.scatter(_x1, _x2, color=colors[i]))
    
            # Plot legend
            if not legend_labels is None: 
                plt.legend(class_distr, legend_labels, loc=1)
    
            # Plot title
            if title:
                if accuracy:
                    perc = 100 * accuracy
                    plt.suptitle(title)
                    plt.title("Accuracy: %.1f%%" % perc, fontsize=10)
                else:
                    plt.title(title)
    
            # Axis labels
            plt.xlabel('Principal Component 1')
            plt.ylabel('Principal Component 2')
    
            plt.show()

    接下来就可以实际进行操作了,我是在谷歌colab中,首先使用:

    !git clone https://github.com/eriklindernoren/ML-From-Scratch.git

    将相关代码复制下来。

    然后进行安装:在ML-From-Scratch目录下输入:

    !python setup.py install

    最后输入:

     !python mlfromscratch/examples/convolutional_neural_network.py

    最终结果:

    +---------+
    | ConvNet |
    +---------+
    Input Shape: (1, 8, 8)
    +----------------------+------------+--------------+
    | Layer Type           | Parameters | Output Shape |
    +----------------------+------------+--------------+
    | Conv2D               | 160        | (16, 8, 8)   |
    | Activation (ReLU)    | 0          | (16, 8, 8)   |
    | Dropout              | 0          | (16, 8, 8)   |
    | BatchNormalization   | 2048       | (16, 8, 8)   |
    | Conv2D               | 4640       | (32, 8, 8)   |
    | Activation (ReLU)    | 0          | (32, 8, 8)   |
    | Dropout              | 0          | (32, 8, 8)   |
    | BatchNormalization   | 4096       | (32, 8, 8)   |
    | Flatten              | 0          | (2048,)      |
    | Dense                | 524544     | (256,)       |
    | Activation (ReLU)    | 0          | (256,)       |
    | Dropout              | 0          | (256,)       |
    | BatchNormalization   | 512        | (256,)       |
    | Dense                | 2570       | (10,)        |
    | Activation (Softmax) | 0          | (10,)        |
    +----------------------+------------+--------------+
    Total Parameters: 538570
    
    Training: 100% [------------------------------------------------] Time:  0:01:32
    <Figure size 640x480 with 1 Axes>
    Accuracy: 0.9846796657381616
    <Figure size 640x480 with 1 Axes>

     

    至此,结合代码一步一步看卷积神经网络的整个实现过程就完成了。通过结合代码的形式,可以加深对深度学习中卷积神经网络相关知识的理解。 

  • 相关阅读:
    selenium iframe切换
    roboframework环境搭建与使用
    ServHa双机热备简单配置
    linux搭建java ee开发环境
    FPGA学习笔记(五)—— 组合逻辑电路设计
    FPGA学习笔记(三)—— 数字逻辑设计基础(抽象的艺术)
    FPGA学习笔记(一)——初识FPGA
    FPGA学习笔记(二)——FPGA学习路线及开发流程
    【js重学系列】异步编程
    【js重学系列】作用域
  • 原文地址:https://www.cnblogs.com/xiximayou/p/12726362.html
Copyright © 2020-2023  润新知