• 【tensorflow2.0】使用tensorflow-serving部署模型


    TensorFlow训练好的模型以tensorflow原生方式保存成protobuf文件后可以用许多方式部署运行。

    例如:通过 tensorflow-js 可以用javascrip脚本加载模型并在浏览器中运行模型。

    通过 tensorflow-lite 可以在移动和嵌入式设备上加载并运行TensorFlow模型。

    通过 tensorflow-serving 可以加载模型后提供网络接口API服务,通过任意编程语言发送网络请求都可以获取模型预测结果。

    通过 tensorFlow for Java接口,可以在Java或者spark(scala)中调用tensorflow模型进行预测。

    我们主要介绍tensorflow serving部署模型、使用spark(scala)调用tensorflow模型的方法

    〇,tensorflow serving模型部署概述

    使用 tensorflow serving 部署模型要完成以下步骤。

    • (1) 准备protobuf模型文件。

    • (2) 安装tensorflow serving。

    • (3) 启动tensorflow serving 服务。

    • (4) 向API服务发送请求,获取预测结果。

    可通过以下colab链接测试效果《tf_serving》: https://colab.research.google.com/drive/1vS5LAYJTEn-H0GDb1irzIuyRB8E3eWc8

    %tensorflow_version 2.x
    import tensorflow as tf
    print(tf.__version__)
    from tensorflow.keras import * 

    一,准备protobuf模型文件

    我们使用tf.keras 训练一个简单的线性回归模型,并保存成protobuf文件。

    import tensorflow as tf
    from tensorflow.keras import models,layers,optimizers
     
    ## 样本数量
    n = 800
     
    ## 生成测试用数据集
    X = tf.random.uniform([n,2],minval=-10,maxval=10) 
    w0 = tf.constant([[2.0],[-1.0]])
    b0 = tf.constant(3.0)
     
    Y = X@w0 + b0 + tf.random.normal([n,1],
        mean = 0.0,stddev= 2.0) # @表示矩阵乘法,增加正态扰动
     
    ## 建立模型
    tf.keras.backend.clear_session()
    inputs = layers.Input(shape = (2,),name ="inputs") #设置输入名字为inputs
    outputs = layers.Dense(1, name = "outputs")(inputs) #设置输出名字为outputs
    linear = models.Model(inputs = inputs,outputs = outputs)
    linear.summary()
     
    ## 使用fit方法进行训练
    linear.compile(optimizer="rmsprop",loss="mse",metrics=["mae"])
    linear.fit(X,Y,batch_size = 8,epochs = 100)  
     
    tf.print("w = ",linear.layers[1].kernel)
    tf.print("b = ",linear.layers[1].bias)
     
    ## 将模型保存成pb格式文件
    export_path = "./data/linear_model/"
    version = "1"       #后续可以通过版本号进行模型版本迭代与管理
    linear.save(export_path+version, save_format="tf")
    Model: "model"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    inputs (InputLayer)          [(None, 2)]               0         
    _________________________________________________________________
    outputs (Dense)              (None, 1)                 3         
    =================================================================
    Total params: 3
    Trainable params: 3
    Non-trainable params: 0
    _________________________________________________________________
    Epoch 1/100
    100/100 [==============================] - 0s 2ms/step - loss: 273.0472 - mae: 13.9096
    Epoch 2/100
    100/100 [==============================] - 0s 2ms/step - loss: 250.0846 - mae: 13.3155
    Epoch 3/100
    100/100 [==============================] - 0s 2ms/step - loss: 228.0106 - mae: 12.7211
    Epoch 4/100
    100/100 [==============================] - 0s 2ms/step - loss: 208.5060 - mae: 12.1514
    Epoch 5/100
    100/100 [==============================] - 0s 2ms/step - loss: 188.6825 - mae: 11.5647
    Epoch 6/100
    100/100 [==============================] - 0s 2ms/step - loss: 170.6377 - mae: 10.9862
    Epoch 7/100
    100/100 [==============================] - 0s 2ms/step - loss: 153.1913 - mae: 10.4133
    Epoch 8/100
    100/100 [==============================] - 0s 2ms/step - loss: 137.3440 - mae: 9.8525
    Epoch 9/100
    100/100 [==============================] - 0s 2ms/step - loss: 122.1956 - mae: 9.2907
    Epoch 10/100
    100/100 [==============================] - 0s 2ms/step - loss: 108.5923 - mae: 8.7439
    Epoch 11/100
    100/100 [==============================] - 0s 2ms/step - loss: 94.8144 - mae: 8.1773
    Epoch 12/100
    100/100 [==============================] - 0s 2ms/step - loss: 83.0037 - mae: 7.6339
    Epoch 13/100
    100/100 [==============================] - 0s 2ms/step - loss: 71.8595 - mae: 7.1003
    Epoch 14/100
    100/100 [==============================] - 0s 2ms/step - loss: 61.8016 - mae: 6.5690
    Epoch 15/100
    100/100 [==============================] - 0s 2ms/step - loss: 52.5519 - mae: 6.0456
    Epoch 16/100
    100/100 [==============================] - 0s 2ms/step - loss: 44.4070 - mae: 5.5431
    Epoch 17/100
    100/100 [==============================] - 0s 2ms/step - loss: 37.0890 - mae: 5.0457
    Epoch 18/100
    100/100 [==============================] - 0s 2ms/step - loss: 30.6758 - mae: 4.5701
    Epoch 19/100
    100/100 [==============================] - 0s 2ms/step - loss: 25.1626 - mae: 4.1214
    Epoch 20/100
    100/100 [==============================] - 0s 2ms/step - loss: 20.3433 - mae: 3.6880
    Epoch 21/100
    100/100 [==============================] - 0s 2ms/step - loss: 16.3199 - mae: 3.2814
    Epoch 22/100
    100/100 [==============================] - 0s 2ms/step - loss: 13.1249 - mae: 2.9330
    Epoch 23/100
    100/100 [==============================] - 0s 2ms/step - loss: 10.4714 - mae: 2.6117
    Epoch 24/100
    100/100 [==============================] - 0s 2ms/step - loss: 8.5397 - mae: 2.3433
    Epoch 25/100
    100/100 [==============================] - 0s 2ms/step - loss: 7.0484 - mae: 2.1351
    Epoch 26/100
    100/100 [==============================] - 0s 2ms/step - loss: 6.1226 - mae: 1.9872
    Epoch 27/100
    100/100 [==============================] - 0s 2ms/step - loss: 5.6070 - mae: 1.9047
    Epoch 28/100
    100/100 [==============================] - 0s 2ms/step - loss: 5.2954 - mae: 1.8510
    Epoch 29/100
    100/100 [==============================] - 0s 2ms/step - loss: 5.0835 - mae: 1.8137
    Epoch 30/100
    100/100 [==============================] - 0s 2ms/step - loss: 4.9148 - mae: 1.7841
    Epoch 31/100
    100/100 [==============================] - 0s 2ms/step - loss: 4.7715 - mae: 1.7581
    Epoch 32/100
    100/100 [==============================] - 0s 2ms/step - loss: 4.6395 - mae: 1.7303
    Epoch 33/100
    100/100 [==============================] - 0s 2ms/step - loss: 4.5205 - mae: 1.7106
    Epoch 34/100
    100/100 [==============================] - 0s 1ms/step - loss: 4.4232 - mae: 1.6903
    Epoch 35/100
    100/100 [==============================] - 0s 2ms/step - loss: 4.3417 - mae: 1.6738
    Epoch 36/100
    100/100 [==============================] - 0s 1ms/step - loss: 4.2691 - mae: 1.6579
    Epoch 37/100
    100/100 [==============================] - 0s 2ms/step - loss: 4.2078 - mae: 1.6470
    Epoch 38/100
    100/100 [==============================] - 0s 2ms/step - loss: 4.1606 - mae: 1.6381
    Epoch 39/100
    100/100 [==============================] - 0s 2ms/step - loss: 4.1203 - mae: 1.6292
    Epoch 40/100
    100/100 [==============================] - 0s 2ms/step - loss: 4.0847 - mae: 1.6230
    Epoch 41/100
    100/100 [==============================] - 0s 2ms/step - loss: 4.0589 - mae: 1.6182
    Epoch 42/100
    100/100 [==============================] - 0s 2ms/step - loss: 4.0382 - mae: 1.6141
    Epoch 43/100
    100/100 [==============================] - 0s 2ms/step - loss: 4.0188 - mae: 1.6109
    Epoch 44/100
    100/100 [==============================] - 0s 2ms/step - loss: 4.0089 - mae: 1.6098
    Epoch 45/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9979 - mae: 1.6075
    Epoch 46/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9891 - mae: 1.6055
    Epoch 47/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9848 - mae: 1.6053
    Epoch 48/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9806 - mae: 1.6044
    Epoch 49/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9752 - mae: 1.6037
    Epoch 50/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9739 - mae: 1.6038
    Epoch 51/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9712 - mae: 1.6024
    Epoch 52/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9690 - mae: 1.6024
    Epoch 53/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9685 - mae: 1.6021
    Epoch 54/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9667 - mae: 1.6021
    Epoch 55/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9651 - mae: 1.6009
    Epoch 56/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9656 - mae: 1.6019
    Epoch 57/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9635 - mae: 1.6016
    Epoch 58/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9640 - mae: 1.6012
    Epoch 59/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9655 - mae: 1.6018
    Epoch 60/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9639 - mae: 1.6016
    Epoch 61/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9650 - mae: 1.6010
    Epoch 62/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9651 - mae: 1.6017
    Epoch 63/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9646 - mae: 1.6021
    Epoch 64/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9638 - mae: 1.6019
    Epoch 65/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9639 - mae: 1.6027
    Epoch 66/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9656 - mae: 1.6013
    Epoch 67/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9645 - mae: 1.6019
    Epoch 68/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9635 - mae: 1.6024
    Epoch 69/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9637 - mae: 1.6015
    Epoch 70/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9643 - mae: 1.6022
    Epoch 71/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9626 - mae: 1.6022
    Epoch 72/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9632 - mae: 1.6015
    Epoch 73/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9638 - mae: 1.6023
    Epoch 74/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9643 - mae: 1.6017
    Epoch 75/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9638 - mae: 1.6003
    Epoch 76/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9648 - mae: 1.6022
    Epoch 77/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9624 - mae: 1.6023
    Epoch 78/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9637 - mae: 1.6019
    Epoch 79/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9644 - mae: 1.6019
    Epoch 80/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9648 - mae: 1.6018
    Epoch 81/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9649 - mae: 1.6025
    Epoch 82/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9631 - mae: 1.6021
    Epoch 83/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9650 - mae: 1.6020
    Epoch 84/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9640 - mae: 1.6020
    Epoch 85/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9644 - mae: 1.6014
    Epoch 86/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9638 - mae: 1.6017
    Epoch 87/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9638 - mae: 1.6024
    Epoch 88/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9646 - mae: 1.6016
    Epoch 89/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9643 - mae: 1.6016
    Epoch 90/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9636 - mae: 1.6019
    Epoch 91/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9637 - mae: 1.6029
    Epoch 92/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9644 - mae: 1.6026
    Epoch 93/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9637 - mae: 1.6014
    Epoch 94/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9623 - mae: 1.6019
    Epoch 95/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9637 - mae: 1.6015
    Epoch 96/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9641 - mae: 1.6017
    Epoch 97/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9635 - mae: 1.6027
    Epoch 98/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9644 - mae: 1.6024
    Epoch 99/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9640 - mae: 1.6021
    Epoch 100/100
    100/100 [==============================] - 0s 2ms/step - loss: 3.9638 - mae: 1.6024
    w =  [[1.99997306]
     [-1.01220131]]
    b =  [2.88236618]
    WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/resource_variable_ops.py:1817: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
    Instructions for updating:
    If using Keras pass *_constraint arguments to layers.
    INFO:tensorflow:Assets written to: ./data/linear_model/1/assets
    # 查看保存的模型文件
    !ls {export_path+version}

    assets saved_model.pb variables

    # 查看模型文件相关信息
    !saved_model_cli show --dir {export_path+str(version)} --all
    MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:
    
    signature_def['__saved_model_init_op']:
      The given SavedModel SignatureDef contains the following input(s):
      The given SavedModel SignatureDef contains the following output(s):
        outputs['__saved_model_init_op'] tensor_info:
            dtype: DT_INVALID
            shape: unknown_rank
            name: NoOp
      Method name is: 
    
    signature_def['serving_default']:
      The given SavedModel SignatureDef contains the following input(s):
        inputs['inputs'] tensor_info:
            dtype: DT_FLOAT
            shape: (-1, 2)
            name: serving_default_inputs:0
      The given SavedModel SignatureDef contains the following output(s):
        outputs['outputs'] tensor_info:
            dtype: DT_FLOAT
            shape: (-1, 1)
            name: StatefulPartitionedCall:0
      Method name is: tensorflow/serving/predict
    WARNING: Logging before flag parsing goes to stderr.
    W0413 05:10:30.262132 140384690243456 deprecation.py:506] From /usr/local/lib/python2.7/dist-packages/tensorflow_core/python/ops/resource_variable_ops.py:1786: calling __init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
    Instructions for updating:
    If using Keras pass *_constraint arguments to layers.
    
    Defined Functions:
      Function Name: '__call__'
        Option #1
          Callable with:
            Argument #1
              inputs: TensorSpec(shape=(None, 2), dtype=tf.float32, name=u'inputs')
            Argument #2
              DType: bool
              Value: False
            Argument #3
              DType: NoneType
              Value: None
        Option #2
          Callable with:
            Argument #1
              inputs: TensorSpec(shape=(None, 2), dtype=tf.float32, name=u'inputs')
            Argument #2
              DType: bool
              Value: True
            Argument #3
              DType: NoneType
              Value: None
    
      Function Name: '_default_save_signature'
        Option #1
          Callable with:
            Argument #1
              inputs: TensorSpec(shape=(None, 2), dtype=tf.float32, name=u'inputs')
    
      Function Name: 'call_and_return_all_conditional_losses'
        Option #1
          Callable with:
            Argument #1
              inputs: TensorSpec(shape=(None, 2), dtype=tf.float32, name=u'inputs')
            Argument #2
              DType: bool
              Value: False
            Argument #3
              DType: NoneType
              Value: None
        Option #2
          Callable with:
            Argument #1
              inputs: TensorSpec(shape=(None, 2), dtype=tf.float32, name=u'inputs')
            Argument #2
              DType: bool
              Value: True
            Argument #3
              DType: NoneType
              Value: None

    二,安装 tensorflow serving

    安装 tensorflow serving 有2种主要方法:通过Docker镜像安装,通过apt安装。

    通过Docker镜像安装是最简单,最直接的方法,推荐采用。

    Docker可以理解成一种容器,其上面可以给各种不同的程序提供独立的运行环境。

    一般业务中用到tensorflow的企业都会有运维同学通过Docker 搭建 tensorflow serving.

    无需算法工程师同学动手安装,以下安装过程仅供参考。

    不同操作系统机器上安装Docker的方法可以参照以下链接。

    Windows: https://www.runoob.com/docker/windows-docker-install.html

    MacOs: https://www.runoob.com/docker/macos-docker-install.html

    CentOS: https://www.runoob.com/docker/centos-docker-install.html

    安装Docker成功后,使用如下命令加载 tensorflow/serving 镜像到Docker中

    docker pull tensorflow/serving

    三,启动 tensorflow serving 服务

    !docker run -t --rm -p 8501:8501 
        -v "/Users/.../data/linear_model/" 
        -e MODEL_NAME=linear_model 
        tensorflow/serving & >server.log 2>&1

    四,向API服务发送请求

    可以使用任何编程语言的http功能发送请求,下面示范linux的 curl 命令发送请求,以及Python的requests库发送请求。

    !curl -d '{"instances": [1.0, 2.0, 5.0]}' 
        -X POST http://localhost:8501/v1/models/linear_model:predict
    {
        "predictions": [[3.06546211], [5.01313448]
        ]
    }
    import json,requests
     
    data = json.dumps({"signature_name": "serving_default", "instances": [[1.0, 2.0], [5.0,7.0]]})
    headers = {"content-type": "application/json"}
    json_response = requests.post('http://localhost:8501/v1/models/linear_model:predict', 
            data=data, headers=headers)
    predictions = json.loads(json_response.text)["predictions"]
    print(predictions)

    参考:

    开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/

    GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days

  • 相关阅读:
    飞机游戏
    nodejs制作爬虫程序
    关于解析字符串
    引用nodejs的url模块实现url路由功能
    appium定位学习
    appium移动端自动化测试的一些感想
    appium的工作原理
    appium desktop 定位弹出框时报错
    APPium连接真机输入框中输入的内容与代码中不一致
    appium 链接真机后,运行代码,但是APP并没有启动
  • 原文地址:https://www.cnblogs.com/xiximayou/p/12690757.html
Copyright © 2020-2023  润新知