• 『学习笔记』线段树合并(洛谷P4556)


    线段树合并

    洛谷 P4556 [Vani有约会]雨天的尾巴 /【模板】线段树合并

    主要思想:

    顾名思义,线段是合并就是将多棵线段树合并到一起,要求线段树维护的数据可以支持合并,例如最大值,区间和等。

    我们在进行合并时要把两棵线段树上相同的结构点合并到一起,换句话说,就是两棵线段树当前要合并的点所表示的区间是一样的

    例如,区间长度是 (8),那么我们合并时要把 ([1,8])([1,8]) 合并到一起, ([5,8])([5,8]) 合并到一起。

    好了,我们知道了主要思想后下面来看如何实现。

    题解:

    • 对于洛谷P4556这道题来说,我们要对这 (n) 个房屋每个点都建一棵权值线段树

      何为权值线段树:就是以题目中救济粮 (z) 为下角标建线段树,维护每种救济粮个数以及最多的是哪种.

      (sum[z]) 记录种类为 (z) 的救济粮有多少。

      (maxz[rt]) 记录第 (rt) 个房屋中数量最多的救济粮种类是多少。

    • 对于每次发放救济粮,暴力更新 (x)(y) 的链是不现实的,这时我们就要用到树上差分的思想。

      (sum[x]++ , sum[y]++)(sum[lca(x,y)]-- ,sum[fa[lca(x,y)]]--),这样对于一个点来说,它的被覆盖次数(救济粮个数)就是以它为根的子树权值和。

      思考一下为什么,可以手玩一下,随便挑几个点试试(emm应该挺好理解的吧,这里不再赘述了)

    • 下面再来谈谈动态开点线段树,我们不需要把整棵树都建出来,需要用哪个点就建哪个点。

      直接令新节点等于 (++cnt)

      这样一来对于节点 (rt) ,它的左子树就不再是 (rt<<1),右子树也不再是 (rt<<1|1),所以我们要存 (ls[rt])(rs[rt])

    完整代码:

    #include <iostream>
    #include <cstdio>
    #define log 20
    
    using namespace std;
    
    const int N = 1e5 + 10;
    const int M = 80 * N;
    const int maxR = 1e5;
    struct node{
    	int v, nxt;
    }edge[N << 1];
    int head[N], tot;
    int n, m, cnt;
    int f[N][21], dep[N];
    int sum[M], maxz[M], ls[M], rs[M];
    int ans[N], root[N];
    
    inline int read(){
    	int x = 0, f = 1;
    	char ch = getchar();
    	while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
    	while(ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
    	return f * x;
    }
    
    inline void add(int x, int y){
    	edge[++tot] = (node){y, head[x]};
    	head[x] = tot;
    }
    
    //----------------------------------------查找lca部分
    //dfs预处理
    void dfs(int x, int fa){
    	f[x][0] = fa;
    	dep[x] = dep[fa] + 1;
    	for(int i = 1; i < log; i++)
    		f[x][i] = f[f[x][i - 1]][i - 1];
    	for(int i = head[x]; i; i = edge[i].nxt){
    		int y = edge[i].v;
    		if(y == fa) continue;
    		dfs(y, x);
    	}
    }
    
    //lca模板
    int lca(int a, int b){
    	if(dep[a] < dep[b]) swap(a, b);
    	for(int i = log - 1; i >= 0; i--)
    		if(dep[f[a][i]] >= dep[b])
    			a = f[a][i];
    	if(a == b) return a;
    	for(int i = log - 1; i >= 0; i--)
    		if(f[a][i] != f[b][i]){
    			a = f[a][i];
    			b = f[b][i];
    		}
    	return f[a][0];
    }
    
    void pushup(int rt){
        if(sum[ls[rt]] >= sum[rs[rt]])
            sum[rt] = sum[ls[rt]], maxz[rt] = maxz[ls[rt]];
        else sum[rt] = sum[rs[rt]], maxz[rt] = maxz[rs[rt]];
    }
    
    //----------------------------------------动态开点 或 更新权值线段树
    void update(int &rt, int l, int r, int z, int val){
    	if(!rt) rt = ++cnt;		//动态开点
    	if(l == r){
    		sum[rt] += val;
    		maxz[rt] = z;
    		return;
    	}
    	int mid = (l + r) >> 1;
    	if(z <= mid) update(ls[rt], l, mid, z, val);
    	else update(rs[rt], mid + 1, r, z, val);
    	pushup(rt);
    }
    
    //----------------------------------------线段树合并
    int merge(int u, int v, int l, int r){
    	if(!u || !v) return u + v;	//这里相当于一棵树为空的话,返回另一棵树,取个巧
    	if(l == r){
    		sum[u] += sum[v];
    		return u;
    	}
    	int mid = (l + r) >> 1;
    	ls[u] = merge(ls[u], ls[v], l, mid);
    	rs[u] = merge(rs[u], rs[v], mid + 1, r);
    	pushup(u);
    	return u;
    }
    
    //----------------------------------------计算答案
    void calc(int x, int fa){
    	for(int i = head[x]; i; i = edge[i].nxt){
    		int y = edge[i].v;
    		if(y == fa) continue;
    		calc(y, x);
    		root[x] = merge(root[x], root[y], 1, maxR);		//整棵树从下到上合并
    	}
    	ans[x] = maxz[root[x]];
    	if(!sum[root[x]]) ans[x] = 0;
    }
    
    int main(){
    	n = read(), m = read();
    	for(int i = 1; i < n; i++){
    		int u, v;
    		u = read(), v = read();
    		add(u, v), add(v, u);
    	}
    	dfs(1, 0);
    	while(m--){
    		int x, y, z;
    		x = read(), y = read(), z = read();
    		int k = lca(x, y);
    		update(root[x], 1, maxR, z, 1);			//树上差分
    		update(root[y], 1, maxR, z, 1);
    		update(root[k], 1, maxR, z, -1);
    		update(root[f[k][0]], 1, maxR, z, -1);
    	}
    	calc(1, 0);
    	for(int i = 1; i <= n; i++)
    		printf("%d
    ", ans[i]);
    	return 0;
    }
    

    End

    本文来自博客园,作者:xixike,转载请注明原文链接:https://www.cnblogs.com/xixike/p/15107902.html

  • 相关阅读:
    Java集合(二)-Set集合
    Java集合类
    Java构造器和初始化块
    学习OpenStack-Neutron网络服务
    Error response from daemon: Get https://index.docker.io/v1/search?q=tomcat&n=25: net/http: TLS handshake timeout
    学习OpenStack-Nova计算服务
    学习OpenStack-Glance组件部署
    报错:rsync同步报错
    报错:创建nginx镜像时出现报错
    报错:重启Docker报错如何解决
  • 原文地址:https://www.cnblogs.com/xixike/p/15107902.html
Copyright © 2020-2023  润新知