• 顾沛《抽象代数》1.4"群的同态与同构"习题解答


    习题:

    7.请把定理1.4.10改写成更一般的语言来叙述,第一句是:"设$f$是群$G_{1}$到$G_{2}$的满同态,且$H<G_{1}$,并记$N={ m Ker}f$,则……"

    解答    与该定理类似的我们有:

    (1)$HN$是$G_{1}$中包含$N$的子群且

    $$HN=f^{-1}(f(H))$$

    即$HN$是$f(H)$的完全原象;

    (2)$(Hcap N)lhd H$且${ m Ker}f|_{H}=Hcap N$;

    (3)考虑同态满射$f|_{H}:H o f(H)=HN$,据同态基本定理便知

    $$HNsimeq H/(Hcap N)$$

    9.举例说明下列命题不正确:

    设$G_{1},G_{2}$不正确,$N_{1}lhd G_{1},N_{2}lhd G_{2}$,且有

    $$G_{1}simeq G_{2},N_{1}simeq N_{2}$$

    则必有$G_{1}/N_{1}simeq G_{2}/N_{2}$.

    解答    例如取$G_{1}=G_{2}=mathbb Z:{mathbb Z,+}$,取$N_{1}=2mathbb Z,N_{2}=3mathbb Z$,那么$N_{1}simeq N_{2}$.事实上根据如下同构便知

    egin{align*}phi:N_{1}& o N_{2}\2a&mapsto 3aend{align*}

    但是$G_{1}/N_{1}=mathbb Z_{2},G_{2}/N_{2}=mathbb Z_{3}$,而

    $$|mathbb Z_{2}|=2,|mathbb Z_{3}|=3$$

    显然二者不同构.

    补充题:

    1.证明定理1.4.8,内容如下:

    设$f$是群$G_{1}$到$G_{2}$的满同态,记$N={ m Ker}f$,则

    (1)$f$建立了$G_{1}$中包含$N$的子群与$G_{2}$中子群间的双射;

    (2)上述映射把正规子群映成正规子群;

    (3)若$Nsubset Hlhd G_{1}$,则

    $$G_{1}/Hsimeq G_{2}/f(H).$$

    证明    (1)令$Gamma$表示$G_{1}$中包含$N$的子群的全体,$Sigma$表示$G_{2}$的子群的全体,作

    egin{align*}phi:Gamma& oSigma\H&mapsto f(H)end{align*}

    由于$f$是满同态,那么显然$phi$确实是一个映射,同时$phi$显然也是满的.再来说明$phi$单,否则存在$H_{1},H_{2}inGamma$且$H_{1} eq H_{2}$使得

    $$f(H_{1})=f(H_{2})$$

    从而存在$bin H_{2}$且$b otin H_{1}$,以及$ain H_{1}$使得

    $$f(a)=f(b)$$

    易知$ab^{-1}in Nsubset H_{1}$,从而$bin H_{1}$,矛盾!这就说明$phi$确实是单的.

    综合便知$phi$为双射.

    (2)由$f$满同态,是显然的.

    (3)由(2)知$f(H)lhd G_{2}$,作对应关系

    egin{align*}varphi: G_{1}/H& o G_{2}/f(H)\aH&mapsto f(a)f(H)end{align*}

    先来说明$varphi$确实是映射,设$aH=bH$,即$b^{-1}ain H$,那么$left(f(b) ight)^{-1}f(a)in f(H)$,从而

    egin{align*}f(a)f(H)&=f(b)f(H)\Rightarrowvarphi(aH)&=varphi(bH)end{align*}

    所以$varphi$确实是映射.

    然后不难验证$varphi$是同构,从而

    $$G_{1}/Hsimeq G_{2}/f(H).$$

    2.设$sigma$是群$G$到自身的自同构,且满足

    $$sigma(g)=gRightarrow g=e$$

    证明:

    (1)$f:g osigma(g)g^{-1}$是单射;

    (2)若$G$是有限群,则$G$的每个元素均可写成$sigma(g)g^{-1}$的形式;

    (3)若$G$是有限群,且$sigma^2={ m id}_{G}$,那么$G$为奇数阶Abel群.

    证明    (1)设$f(g)=f(h)$,则

    egin{align*}sigma(g)g^{-1}&=sigma(h)h^{-1}\Rightarrowsigma(h^{-1}g)&=h^{-1}g=eend{align*}

    从而$g=h$,即$f$单.

    (2)由于$|G|<infty$,而据(1)便知

    $$|f(G)|geq|G|$$

    注意$f(G)subset G$,从而$f(G)=G$.而$f(G)$中任一元素均具有$sigma(g)g^{-1}$的形式,也就是说$G$中元素也具有此形式.

    (3)由(2)知$forall gin G$,具有形式$sigma(a)a^{-1}$,从而

    egin{align*}sigma(g)&=sigma^2(a)sigma(a^{-1})=left(sigma(a)a^{-1} ight)^{-1}=g^{-1}end{align*}

    由有题目可知若$g eq e$,则$sigma(g)=g^{-1} eq g$,所以在$G$中非零元必然成对出现,所以$|G|$为奇数.

    此外$forall g,hin G$有

    $$gh=sigmaleft((gh)^{-1} ight)=sigma(h^{-1})sigma(g^{-1})=hg$$

    所以$G$是Abel群.

    4.证明${mathbb Q^*,cdot}$与${mathbb Q,+}$不同构.

    证明    若存在同构$f:mathbb Q^* omathbb Q$,则

    $$f(-1)^2=f(1)=0$$

    从而$f(-1)=0$,与$f$单矛盾!

    5.求${mathbb C^*,cdot}$的子群$N$使得

    $${mathbb C^*,cdot}/Nsimeq{mathbb R^+,cdot}.$$ 

    解    作映射egin{align*}phi:mathbb C^*& omathbb R^+\z&mapsto|z|end{align*}

    我们不难验证$phi$为同态满射,且

    $${ m Ker}phi={e^{i heta}:-pi< hetaleqpi}$$据同态基本定理可知

    $$mathbb C^*/{ m Ker}phisimeqmathbb R^+$$

    因此取$N={ m Ker}phi$即可.

    6.设$Hlhd G$,且$|H|=n$,$|G/H|=m$,且$(m,n)=1$.证明:$H$是$G$的唯一的$n$阶子群.

    证明    若存在$G$的另一$n$阶子群$H_{1}<G$,据定理1.4.10可知

    $$H_{1}/(H_{1}cap H)simeq (H_{1}H)/H$$

    如果设$|H_{1}cap H|=l$,那么显然$lmid n$.又$(H_{1}H)/H<G/H$,据Lagrange定理

    $$vert H_{1}/(H_{1}cap H)vertig|vert G/Hvert$$

    从而egin{align*}frac{n}{l}mid mRightarrow n&mid mlRightarrow nmid lend{align*}

    所以$n=l$,而$H_{1}cap Hsubset H$且$H_{1}cap Hsubset H_{1}$,易知

    $$H=H_{1}$$

    所以$H$是唯一的$n$阶子群.

  • 相关阅读:
    web前端性能意义、关注重点、测试方案、优化技巧
    前端性能优化和规范
    高性能网站性能优化与系统架构(ZT)
    【转载】12306铁道部订票网站性能分析
    构架高性能WEB网站的几点知识
    减少图片HTTP 请求的方案
    网站性能优化:动态缩略图技术实现思路
    不错的jquery插件
    jQuery 遍历
    JavaScript slice() 方法
  • 原文地址:https://www.cnblogs.com/xixifeng/p/3843884.html
Copyright © 2020-2023  润新知