• HDU


    题意:给你一张带权无向图,先求出这张图从点1出发的最短路树,再求在树上经过k个节点最长的路径值,以及个数.
    分析:首先求最短路树,跑一遍最短路之后dfs一遍即可建出最短路树.
    第二个问题,树分治解决.
    对于以root为根的树,所求的路径只会有两种情况.

    1. 存在于root的子树中,不经过root;
    2. 经过root,路径的两端在root的两棵子树中.
      第一种情况,我们交给分治去解决,
      第二种情况,需要知道所有子树中走过j步能到达的最远距离,以及其方案数.通过dfs可以得到这些信息.用这些信息,再去和其他子树的信息结合,去更新答案.
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int INF = 1<<30;
    const int MAXN = 1e5+5;
    struct Edge{
        int v,w,next;
    }E[MAXN<<2];
    int head[MAXN],tot , son[MAXN], Max[MAXN], siz[MAXN], dep[MAXN] ,now[MAXN];
    LL cnt[MAXN], Maxcnt[MAXN] , ansnum;
    int maxdep , clk, ansdep, minson;
    bool vis[MAXN];
    int root,N,M,k;
    
    void init()
    {
        memset(vis,0,sizeof(vis));
        memset(head,-1,sizeof(head));
        tot = ansnum = clk = 0;
        ansdep = 0;
    }
    
    void Add(int u,int v,int w){
        E[tot]  =(Edge){v,w,head[u]};
        head[u] = tot++;
    }
    //求子树的重心
    void getsize(int u, int fa)
    {
        siz[u] = 1;
        for (int i = head[u]; i != -1; i = E[i].next)
        {
            int v = E[i].v;
            if (v == fa || vis[v])
                continue;
            getsize(v, u);
            siz[u] += siz[v];
        }
    }
    void getroot(int u, int fa, int s)
    {
        int max1 = 0;
        for (int i = head[u]; i != -1; i = E[i].next)
        {
            int v = E[i].v;
            if (v == fa || vis[v])
                continue;
            getroot(v, u, s);
            max1 = max(max1, siz[v]);
        }
        max1 = max(max1, s - siz[u]);
        if (minson > max1)
        {
            minson = max1;
            root = u;
        }
    }
    void getMaxdep(int depp, int u, int fa)
    {
        maxdep = max(maxdep, depp);
        for (int i = head[u]; i != -1; i = E[i].next)
        {
            int v = E[i].v;
            if (v == fa || vis[v])
                continue;
            getMaxdep(depp + 1, v, u);
        }
    }
    void getdep(int depp, int len, int u, int fa)
    {
        if (dep[depp] < len)
        {
            dep[depp] = len;
            cnt[depp] = 1;
        }
        else if (dep[depp] == len)
            cnt[depp]++;
        if (depp >= k)
            return;
        for (int i = head[u]; i != -1; i = E[i].next)
        {
            int v = E[i].v;
            if (v == fa || vis[v])
                continue;
            getdep(depp + 1, len + E[i].w, v, u);
        }
    }
    void getans(int u)
    {
        vis[u] = 1;
        for (int i = head[u]; i != -1; i = E[i].next){
            int v = E[i].v;
            if (vis[v]) continue;
            minson = INF;
            getsize(v, -1);
            getroot(v, -1, siz[v]);
            getans(root);
        }
        /*
        求经过k个节点的最长路径,以及其方案数
        答案可能有两种情况, 一是存在于u的子树中,这种情况交给分治处理
        二是该路径经过了重心本身,在以下代码中处理
        */
        clk++;
        now[0] = clk;
        dep[0] = 0 ,cnt[0] = 1;
        Maxcnt[0] = 1, Max[0] = 0;
        for (int i = head[u]; i != -1; i = E[i].next){
            int v = E[i].v;
            if (vis[v])  continue;
            maxdep = -1;
            //获取这棵子树的最大深度
            getMaxdep(1, v, u);
            for (int j = 0; j <= maxdep && j <= k; j++)  dep[j] = -1;
            //获取这棵子树中经过i个节点,所能走的最长距离以及方案数,
            //分别记录在dep[i], 和cnt[i]中
            getdep(1, E[i].w, v, u);
    
            //根据当前信息和这棵子树的信息更新答案
            for (int j = 0; j <= maxdep && j < k; j++){
                int tmp = k - j - 1;
                if (now[tmp] != clk)
                    continue;
                if (ansdep < Max[tmp] + dep[j]){
                    ansdep = Max[tmp] + dep[j];
                    ansnum = Maxcnt[tmp] * cnt[j];
                }
                else if (ansdep == Max[tmp] + dep[j]){
                    ansnum += Maxcnt[tmp] * cnt[j];
                }
            }
            //用这个子树的信息更新当前的信息
            //Max[i]记录之前已经访问过的子树中,经过i个节点能走过的最长距离
            //Maxcnt[i] 记录其方案数
            for (int j = 1; j <= maxdep && j < k; j++){
                if (now[j] != clk || Max[j] < dep[j]){
                    Max[j] = dep[j];
                    Maxcnt[j] = cnt[j];
                    now[j] = clk;
                }
                else if (now[j] == clk && Max[j] == dep[j]){
                    Maxcnt[j] += cnt[j];
                }
            }
        }
        vis[u] = 0;
    }
    
    ///////////最短路树
    struct Dij{
        struct Edge{
            int v, w;
            bool operator < (const Edge & rhs) const{
                return v<rhs.v;
            }
        };
        vector<Edge> G[MAXN];
        int N,d[MAXN];
        bool vis[MAXN];
    
        struct HeapNode{
            int u,val;
            bool operator < (const HeapNode & rhs) const{
                return val>rhs.val;
            }
        };
        void init(int N){
            this -> N = N;
            memset(vis,0,sizeof(vis));
            for(int i=0;i<=N;++i) G[i].clear();
        }
    
        void AddEdge(int u,int v,int w){
            G[u].push_back((Edge){v,w});
        }
    
        void dijkstra(int s){
            for(int i=1;i<=N;++i){
                sort(G[i].begin(),G[i].end());
            }
    
            for(int i=0;i<=N;++i) d[i] = INF;
            d[s] = 0;
            priority_queue< HeapNode > Q;
            Q.push((HeapNode){s,0});
            while(!Q.empty()){
                HeapNode  x = Q.top(); Q.pop();
                if(vis[x.u]) continue;
                vis[x.u] = 1;
                int u = x.u, sz = G[u].size();
                for(auto & e : G[u]){
                    int v = e.v;
                    if(d[v]> d[u]+e.w){
                        d[v] = d[u] + e.w;
                        Q.push((HeapNode){v,d[v]});
                    }
                }
            }
        }
    
        void dfs(int u,int fa){
            vis[u] = true;
            for(auto & e: G[u]){
                int v=  e.v;
                if(v==fa || vis[v]) continue;
                if(d[v]== d[u]+e.w){
                    Add(u,v,e.w);
                    Add(v,u,e.w);
                    dfs(v,u);
                }
            }
        }
    }G;
    
    ////////////////// main
    int main()
    {
        #ifndef ONLINE_JUDGE
            freopen("in.txt","r",stdin);
            freopen("out.txt","w",stdout);
        #endif
        int T; scanf("%d",&T);
        while(T--){
            scanf("%d %d %d",&N, &M, &k);
            G.init(N);
            int u,v,w;
            while(M--){
                scanf("%d %d %d",&u, &v, &w);
                G.AddEdge(u,v,w);
                G.AddEdge(v,u,w);
            }
            G.dijkstra(1);
            init();              //树的初始化
            memset(G.vis,0,sizeof(G.vis));
            G.dfs(1,-1);           //建最短路径树
    
            memset(now,-1,sizeof(now));
            root = -1;
            minson = INF;
            getroot(1,-1,N);
            getans(root);
            printf("%d %lld
    ",ansdep,ansnum);
        }
        return 0;
    }
    
    
  • 相关阅读:
    JavaScript Validator 报错
    JSP项目_Web路径_磁盘物理路径
    TreaponseHeader
    TrequestHeader
    HTML学习笔记1
    SQL文摘:DATE_TRUNC: A SQL Timestamp Function You Can Count On
    SQL文摘:Writing Subqueries in SQL
    Python文摘:Requests (Adavanced Usage)
    Python文摘:Requests
    Python文摘:More About Unicode in Python 2 and 3
  • 原文地址:https://www.cnblogs.com/xiuwenli/p/9740504.html
Copyright © 2020-2023  润新知