题意:求母串中可以匹配模式串的子串的个数,但是每一位i的字符可以左右偏移k个位置.
分析:类似于 UVALive -4671. 用FFT求出每个字符成功匹配的个数.因为字符可以偏移k个单位,先用尺取法处理出每个位置能够取到的字符.设模式串长度为m.
令(C(m-1+k) = sum_{i=0}^{m-1}A_{i+k}*B(m-i-1)).
反转模式串B, 对每个字符c,若该位上能够取到c,则多项式该位取1,否则为0,FFT求卷积.并记录[m-1,n-1]每个位置4次计算的系数(C)之和.
若系数之和=m,表示母串中以位置i结尾,长度为m的字串与B相匹配.
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 4e5 + 10;
const double PI = acos(-1.0);
struct Complex{
double x, y;
inline Complex operator+(const Complex b) const {
return (Complex){x +b.x,y + b.y};
}
inline Complex operator-(const Complex b) const {
return (Complex){x -b.x,y - b.y};
}
inline Complex operator*(const Complex b) const {
return (Complex){x *b.x -y * b.y,x * b.y + y * b.x};
}
} va[MAXN * 2 + MAXN / 2], vb[MAXN * 2 + MAXN / 2];
int lenth = 1, rev[MAXN * 2 + MAXN / 2];
int N, M; // f 和 g 的数量
//f g和 的系数
// 卷积结果
// 大数乘积
int f[MAXN],g[MAXN];
vector<LL> conv;
vector<LL> multi;
//f g
void init()
{
int tim = 0;
lenth = 1;
conv.clear(), multi.clear();
memset(va, 0, sizeof va);
memset(vb, 0, sizeof vb);
while (lenth <= N + M - 2)
lenth <<= 1, tim++;
for (int i = 0; i < lenth; i++)
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (tim - 1));
}
void FFT(Complex *A, const int fla)
{
for (int i = 0; i < lenth; i++){
if (i < rev[i]){
swap(A[i], A[rev[i]]);
}
}
for (int i = 1; i < lenth; i <<= 1){
const Complex w = (Complex){cos(PI / i), fla * sin(PI / i)};
for (int j = 0; j < lenth; j += (i << 1)){
Complex K = (Complex){1, 0};
for (int k = 0; k < i; k++, K = K * w){
const Complex x = A[j + k], y = K * A[j + k + i];
A[j + k] = x + y;
A[j + k + i] = x - y;
}
}
}
}
void getConv(){ //求多项式
init();
for (int i = 0; i < N; i++)
va[i].x = f[i];
for (int i = 0; i < M; i++)
vb[i].x = g[i];
FFT(va, 1), FFT(vb, 1);
for (int i = 0; i < lenth; i++)
va[i] = va[i] * vb[i];
FFT(va, -1);
for (int i = 0; i <= N + M - 2; i++)
conv.push_back((LL)(va[i].x / lenth + 0.5));
}
const int len = 2e5+10;
char s1[len],s2[len];
int cnt[4];
int have[MAXN][4];
map<char,int> id;
LL ans[MAXN];
void debug(){
for(int i=0;i<4;++i){
for(int j=0;j<4;++j){
cout<<have[i][j]<<" ";
}
cout<<endl;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int n,m,k;
id['A'] = 0, id['C'] = 1, id['G'] =2, id['T'] = 3;
scanf("%d %d %d",&n,&m,&k );
scanf("%s",s1);
scanf("%s",s2);
int L=0,R=-1;
for(int i=0;i<n;++i){
while(L<i-k) cnt[id[s1[L++]]]--; //退
while(R<n-1 && R<i+k) cnt[id[s1[++R]]]++; //增
for(int j=0;j<4;++j){
if(cnt[j]) have[i][j] = 1;
}
}
for(int k=0;k<4;++k){
N = n, M = m;
for(int i=0;i<N;++i){
if(have[i][k]) f[i] = 1;
else f[i] = 0;
}
for(int i=0;i<M;++i){
if(id[s2[m-i-1]]==k) g[i] = 1;
else g[i] = 0;
}
getConv();
int sz = conv.size();
for(int i=m-1;i<sz;++i){
ans[i]+= conv[i];
}
}
int res=0;
for(int i=m-1;i<n;++i){
if(ans[i]==m){
res++;
}
}
printf("%d
",res);
return 0;
}