• CodeForces


    题意:有N种物品,每种物品有价值(a_i),每种物品可选任意多个,求拿k件物品,可能损失的价值分别为多少。
    分析:相当于求((a_1+a_2+...+a_n)^k)中,有哪些项的系数不为0.做k次FFT求卷积求卷积肯定爆炸,考虑用分治的形式计算,因为中间计算的时候会重复计算一些幂次,所以用记忆化搜索的形式,保留计算结果。
    因为只要计算出哪些项不为0,所以卷积之后求结果时,系数非0项用1作系数即可,否则分分钟炸精度。
    当然也可以用快速幂求解#.

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int MAXN = 2e6 + 10;
    const double PI = acos(-1.0);
    struct Complex{
        double x, y;
        inline Complex operator+(const Complex b) const {
            return (Complex){x +b.x,y + b.y};
        }
        inline Complex operator-(const Complex b) const {
            return (Complex){x -b.x,y - b.y};
        }
        inline Complex operator*(const Complex b) const {
            return (Complex){x *b.x -y * b.y,x * b.y + y * b.x};
        }
    } va[MAXN * 2 + MAXN / 2], vb[MAXN * 2 + MAXN / 2];
    int lenth = 1, rev[MAXN * 2 + MAXN / 2];
    int N, M;   // f 和 g 的数量
        // f g和 的系数
        // 卷积结果
        // 大数乘积
    int f[MAXN],g[MAXN];
    vector<LL> conv;
    vector<LL> multi;
    //f g
    void init()
    {
        int tim = 0;
        lenth = 1;
        conv.clear(), multi.clear();
        memset(va, 0, sizeof va);
        memset(vb, 0, sizeof vb);
        while (lenth <= N + M - 2)
            lenth <<= 1, tim++;
        for (int i = 0; i < lenth; i++)
            rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (tim - 1));
    }
    
    void FFT(Complex *A, const int fla)
    {
        for (int i = 0; i < lenth; i++){
            if (i < rev[i]){
                swap(A[i], A[rev[i]]);
            }
        }
        for (int i = 1; i < lenth; i <<= 1){
            const Complex w = (Complex){cos(PI / i), fla * sin(PI / i)};
            for (int j = 0; j < lenth; j += (i << 1)){
                Complex K = (Complex){1, 0};
                for (int k = 0; k < i; k++, K = K * w){
                    const Complex x = A[j + k], y = K * A[j + k + i];
                    A[j + k] = x + y;
                    A[j + k + i] = x - y;
                }
            }
        }
    }
    void getConv(){             //求多项式
        init();
        for (int i = 0; i < N; i++)
            va[i].x = f[i];
        for (int i = 0; i < M; i++)
            vb[i].x = g[i];
        FFT(va, 1), FFT(vb, 1);
        for (int i = 0; i < lenth; i++)
            va[i] = va[i] * vb[i];
        FFT(va, -1);
        for (int i = 0; i <= N + M - 2; i++)
            conv.push_back((LL)(va[i].x / lenth + 0.5)>0?1:0);
    }
    
    
    int base[MAXN];
    vector<LL> mi[1005];
    int num;
    bool make[1005];
    
    vector<LL> dfs(int i,int j,int cc){
        if(i==j){
            vector<LL> res;
            for(int i=0;i<num;++i){
                res.push_back(base[i]);
            }
            make[cc] = true;
            mi[cc] = res;
            return res;
        }
        vector<LL> L,R;
        int m = (i+j)>>1;
        if(make[m-i+1]) L = mi[m-i+1];
        else L = dfs(i,m,m-i+1);
        if(make[j-m]) R = mi[j-m];
        else R = dfs(m+1,j,j-m);
        N = L.size();
        M = R.size();
        for(int i=0;i<N;++i) f[i] = L[i];
        for(int i=0;i<M;++i) g[i] = R[i];
        getConv();
        make[cc] = true;
        mi[cc] = conv;
        return conv;
    }
    
    int cnt[MAXN];
    
    int main()
    {
        int n,k;
        scanf("%d %d",&n, &k);
        int mx = -1;
        int mn = 100005;
        for(int i=1,tmp;i<=n;++i){
            scanf("%d",&tmp);
            cnt[tmp]++;
            mn = min(mn,tmp);
            mx = max(mx,tmp);
        }
        num = mx+1;
        for(int i=0;i<num;++i){
            base[i] = cnt[i];
        }
        conv = dfs(1,k,k);
        int sz = conv.size();
        for(int i=k*mn;i<sz;++i){
            if(!conv[i]) continue;
            printf("%d%c",i,i==sz-1?'
    ':' ');
        }
        return 0;
    }
    
  • 相关阅读:
    七、文件的排序、合并和分割
    六、awk编程
    五、sed命令
    四、grep命令
    三、正则表达式
    二、Linux文件系统和文本编辑器
    一、shell基础知识点
    mysql实现交易编码生成(代替oracle的序列)
    新安装Centos无法访问网络
    uiview 动画
  • 原文地址:https://www.cnblogs.com/xiuwenli/p/9729475.html
Copyright © 2020-2023  润新知