• SPOJ


    题意:给N个数,不重复地选3个数,求能够组成的数有多少种选法.
    分析:若只选两个数就比较好求,FFT后减去两个相同的数构成的情况,再将每种情况除2(2个数排列有两种不同可能)即可.
    选3个数也是类似地用容斥的方法计算,首先无限制地情况下,多项式中多计算了两个数相同和3个数相同的情况.有式:(sum(xyz) = frac{A(x)^3 -3{B(x^2)*A(x)} + 2C(x^3)}{6}).其中两个数相同的情况,排列有3种可能,三个数相同的情况,排列只一种可能.即多减去了2次三个数相同的情况,根据容斥原理,需要加回.

    #include <bits/stdc++.h>
    using namespace std;
    using namespace std;
    typedef long long LL;
    const int MAXN = 4e5 + 10;
    const double PI = acos(-1.0);
    struct Complex{
        double x, y;
        inline Complex operator+(const Complex b) const {
            return (Complex){x +b.x,y + b.y};
        }
        inline Complex operator-(const Complex b) const {
            return (Complex){x -b.x,y - b.y};
        }
        inline Complex operator*(const Complex b) const {
            return (Complex){x *b.x -y * b.y,x * b.y + y * b.x};
        }
    } va[MAXN * 2 + MAXN / 2], vb[MAXN * 2 + MAXN / 2];
    int lenth = 1, rev[MAXN * 2 + MAXN / 2];
    int N, M;   // f 和 g 的数量
        //f g和 的系数
        // 卷积结果
        // 大数乘积
    int f[MAXN],g[MAXN];
    vector<LL> conv;
    vector<LL> multi;
    //f g
    void init()
    {
        int tim = 0;
        lenth = 1;
        conv.clear(), multi.clear();
        memset(va, 0, sizeof va);
        memset(vb, 0, sizeof vb);
        while (lenth <= N + M - 2)
            lenth <<= 1, tim++;
        for (int i = 0; i < lenth; i++)
            rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (tim - 1));
    }
    void FFT(Complex *A, const int fla)
    {
        for (int i = 0; i < lenth; i++){
            if (i < rev[i]){
                swap(A[i], A[rev[i]]);
            }
        }
        for (int i = 1; i < lenth; i <<= 1){
            const Complex w = (Complex){cos(PI / i), fla * sin(PI / i)};
            for (int j = 0; j < lenth; j += (i << 1)){
                Complex K = (Complex){1, 0};
                for (int k = 0; k < i; k++, K = K * w){
                    const Complex x = A[j + k], y = K * A[j + k + i];
                    A[j + k] = x + y;
                    A[j + k + i] = x - y;
                }
            }
        }
    }
    
    int a[40005];
    int cnt[MAXN],cnt2[MAXN],cnt3[MAXN];
    
    void getConv(){             //求多项式
        init();
        for (int i = 0; i < N; i++)
            va[i].x = f[i];
        for (int i = 0; i < M; i++)
            vb[i].x = g[i];
        FFT(va, 1), FFT(vb, 1);
        for (int i = 0; i < lenth; i++)
            va[i] = va[i]*(va[i]*va[i] - (Complex){3.0,0.0}*vb[i]);
        FFT(va, -1);
        for (int i = 0; i <= N + M - 2; i++)
            conv.push_back(((LL)(va[i].x / lenth + 0.5)+2*cnt3[i])/6);
    }
    
    const int limit = 120005;
    
    int main()
    {
        #ifndef ONLINE_JUDGE
            freopen("in.txt","r",stdin);
            freopen("out.txt","w",stdout);
        #endif
        int n;
        scanf("%d",&n);
        int mx = -1;
        for(int i=1;i<=n;++i){
            scanf("%d",&a[i]);
            a[i]+= 20000;
            mx = max(mx,a[i]);
            cnt[a[i]]++;
            cnt2[a[i]*2]++;
            cnt3[a[i]*3]++;
        }
        N = mx+1;
        for(int i=0;i<limit;++i){
            f[i] = cnt[i];
        }
        M = mx*2+1;
        for(int i=0;i<limit;++i){
            g[i] = cnt2[i];
        }
        getConv();
        int sz = conv.size();
        for(int i=0;i<sz;++i){
            if(!conv[i]) continue;
            printf("%d : %lld
    ",i-60000,conv[i]);
        }
        return 0;
    }
    
    
  • 相关阅读:
    JSON
    robotframework常见的问题
    robotframework——excel处理方法
    robotframework获得随机数字的方法
    robotframework定位动态元素
    robotframework的关键字区分大小写的问题
    自动化测试相关知识
    ride控制台乱码的解决方法
    xpath定位兄弟元素
    python——运算
  • 原文地址:https://www.cnblogs.com/xiuwenli/p/9728118.html
Copyright © 2020-2023  润新知