题意:将每件物品视作一个点,那么物品之间的价值交换就是一条有向边。本题中我们新建一个点 N+1 作为源点,那么需要做的就是找到一条从N+1 到1 的最短路。
根据题意可知,建立两条边的前提条件是其等级 L 之差 不超过 M。所以尝试把每个物品的等级都依次视作下界,每次都先将N个物品本身的价格作为边,起点是 N+1,建图。
然后依次比较其等价物品的等级和下界之差,若与下界之差大于M,则不能加边;若下界的值大于该物品等级,也不能加边。每次都跑一边Dijkstra,取min(d[1])。
#include<iostream> #include<cstring> #include<stdio.h> #include<vector> #include<string> #include<algorithm> #include<queue> #include<cmath> using namespace std; typedef int LL; const int maxn =1e3+5; const LL INF =0x3f3f3f3f; struct Edge{ int to,next; LL val; }; struct HeapNode{ LL d; //费用或路径 int u; bool operator < (const HeapNode & rhs) const{return d > rhs.d;} }; struct Dijstra{ int n,m,tot; Edge edges[maxn<<8]; bool used[maxn]; LL d[maxn]; int head[maxn]; void init(int n){ this->n = n; this->tot=0; memset(head,-1,sizeof(head)); } void Addedge(int u,int v ,LL dist){ edges[tot].to = v; edges[tot].val = dist; edges[tot].next = head[u]; head[u] = tot++; } void dijkstra(int s){ memset(used,0,sizeof(used)); priority_queue<HeapNode> Q; for(int i=0;i<=n;++i) d[i]=INF; d[s]=0; Q.push((HeapNode){d[s],s}); while(!Q.empty()){ HeapNode x =Q.top();Q.pop(); int u =x.u; if(used[u]) continue; used[u]= true; for(int i=head[u];~i;i=edges[i].next){ Edge & e = edges[i]; if(d[e.to] > d[u] + e.val){ d[e.to] = d[u] +e.val; Q.push((HeapNode){d[e.to],e.to}); } } } } }G; struct Node{ LL P; int L,X; vector<int> item,cost; }vis[maxn]; //#define LOCAL int main() { #ifdef LOCAL freopen("in.txt","r",stdin); freopen("out.txt","w",stdout); #endif int N,M,u,v,a; LL tmp,b; while(scanf("%d%d",&M,&N)==2){ for(int i=1;i<=N;++i){ scanf("%d%d%d",&vis[i].P,&vis[i].L,&vis[i].X); vis[i].item.clear(); vis[i].cost.clear(); for(int j=1;j<=vis[i].X;++j){ scanf("%d%d",&a,&b); vis[i].item.push_back(a); vis[i].cost.push_back(b); } } LL res=INF; for(int i=1;i<=N;++i){ G.init(N+1); int low = vis[i].L; for(int j=1;j<=N;++j) G.Addedge(N+1,j,vis[j].P); for(int j=1;j<=N;++j){ if(low>vis[j].L || vis[j].L-low>M) continue; for(int k=0;k<vis[j].X;++k){ u = vis[j].item[k]; if(vis[u].L-low>M || low>vis[u].L) continue; G.Addedge(u,j,vis[j].cost[k]); } } G.dijkstra(N+1); res = min(res,G.d[1]); } printf("%d ",res); } return 0; }