最少步数
时间限制:3000 ms | 内存限制:65535 KB
难度:4
- 描述
-
这有一个迷宫,有0~8行和0~8列:
1,1,1,1,1,1,1,1,1
1,0,0,1,0,0,1,0,1
1,0,0,1,1,0,0,0,1
1,0,1,0,1,1,0,1,1
1,0,0,0,0,1,0,0,1
1,1,0,1,0,1,0,0,1
1,1,0,1,0,1,0,0,1
1,1,0,1,0,0,0,0,1
1,1,1,1,1,1,1,1,10表示道路,1表示墙。
现在输入一个道路的坐标作为起点,再如输入一个道路的坐标作为终点,问最少走几步才能从起点到达终点?
(注:一步是指从一坐标点走到其上下左右相邻坐标点,如:从(3,1)到(4,1)。)
- 输入
- 第一行输入一个整数n(0<n<=100),表示有n组测试数据;
随后n行,每行有四个整数a,b,c,d(0<=a,b,c,d<=8)分别表示起点的行、列,终点的行、列。 - 输出
- 输出最少走几步。
- 样例输入
-
2 3 1 5 7 3 1 6 7
- 样例输出
-
12 11
#include <iostream> #include <vector> #include <cstring> #include <utility> #include <queue> using namespace std; typedef pair<int,int> Point; const int maze[9][9] ={ 1,1,1,1,1,1,1,1,1, 1,0,0,1,0,0,1,0,1, 1,0,0,1,1,0,0,0,1, 1,0,1,0,1,1,0,1,1, 1,0,0,0,0,1,0,0,1, 1,1,0,1,0,1,0,0,1, 1,1,0,1,0,1,0,0,1, 1,1,0,1,0,0,0,0,1, 1,1,1,1,1,1,1,1,1, }; bool visit[9][9]; const int dx[] = {0,1,0,-1}; const int dy[] = {1,0,-1,0}; int bfs(Point startP,Point endP){ queue<Point> p; p.push(startP); visit[startP.first][startP.second] = true; int res = 0,cnt = 0,newCnt = 1; while(!p.empty()){ cnt = newCnt; newCnt = 0; while(cnt--){ Point tmp = p.front(); p.pop(); if(tmp.first == endP.first && tmp.second == endP.second) return res; else{ for(int i = 0; i < 4; ++ i){ int newx = tmp.first + dx[i], newy = tmp.second + dy[i]; if(!visit[newx][newy] && !maze[newx][newy]){ p.push(Point(newx,newy)); visit[newx][newy] = true; newCnt++; } } } } ++res; } return -1; } int main(){ int n; cin >> n; while(n--){ int a,b,c,d; cin >> a >> b >> c >> d; memset(visit,false,sizeof(visit)); cout<<bfs(Point(a,b),Point(c,d))<<endl; } }