• [递归入门] 走迷宫


    题目描述:有一个n*m格的迷宫(表示有n行、m列),其中有可走的也有不可走的,如果用1表示可以走,0表示不可以走,文件读入这n*m个数据和起始点、结束点(起始点和结束点都是用两个数据来描述的,分别表示这个点的行号和列号)。现在要你编程找出所有可行的道路,要求所走的路中没有重复的点,走时只能是上下左右四个方向。如果一条路都不可行,则输出相应信息(用-l表示无路)。请统一用 左上右下的顺序拓展,也就是 (0,-1),(-1,0),(0,1),(1,0)

    输入

    第一行是两个数n,m( 1 < n , m < 15 ),接下来是m行n列由1和0组成的数据,最后两行是起始点和结束点。 

    输出

      所有可行的路径,描述一个点时用(x,y)的形式,除开始点外,其他的都要用“->”表示方向。 
      如果没有一条可行的路则输出-1。

    样例输入

    5 6 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 5 6

    样例输出

    (1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)
    (1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
    (1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
    (1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)
    (1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
    (1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
    (1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
    (1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
    (1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
    (1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
    (1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
    (1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)
     
    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <map>
    using namespace std;
    
    int n,m;
    
    const int maxn=20;
    
    int maxtri[maxn][maxn];
    int flag[maxn][maxn];
    
    vector<pair<int,int> > ans;
    
    pair<int ,int> begin_point,end_point;
    
    int X[4]={0,-1,0,1};
    int Y[4]={-1,0,1,0};
    
    int p_flag=0;
    
    void DFS(int x,int y)
    {
        flag[x][y]=1;
        ans.push_back(make_pair(x,y));
        if(x==end_point.first&&y==end_point.second)
        {
            if(p_flag==0)    p_flag=1;
            //ans.push_back(make_pair(x,y));
            for(int i=0;i<ans.size();i++)
            {
                if(i>0)
                {
                    printf("->");
                }
                printf("(%d,%d)",ans[i].first,ans[i].second);
            }
            printf("
    ");
            //ans.pop_back();
            return ;
        }
        for(int i=0;i<4;i++)
        {
            int newx=x+X[i];
            int newy=y+Y[i];
            if(newx>=1&&newx<=n&&newy>=1&&newy<=m&&maxtri[newx][newy]==1&&flag[newx][newy]==0)
            {
                DFS(newx,newy);
                ans.pop_back();
                flag[newx][newy]=0;
            }
        }
    }
    
    int main()
    {
        memset(flag,0,sizeof(flag));
        scanf("%d %d",&n,&m);
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                scanf("%d",&maxtri[i][j]);
            }
        }
        //画边界 
        for(int i=0;i<=n+1;i++)
        {
            for(int j=0;j<=m+1;j++)
            {
                if(i==0||j==0||i==n+1||j==m+1)
                {
                    maxtri[i][j]=0;
                }
            }
        }
        scanf("%d %d",&begin_point.first,&begin_point.second);
        scanf("%d %d",&end_point.first,&end_point.second);
        DFS(begin_point.first,begin_point.second);
        if(p_flag==0)
        {
            printf("-1
    ");
        }
        return 0;
    }
     
     
  • 相关阅读:
    CocoaPods入门到精通
    SDAutoLayout 一行代码搞定自动布局
    iOS 开发实践之Auto Layout(From Vincent Sit)
    web前端开发_清除浮动
    转 使用Autolayout xib实现动态高度的TableViewCell
    有了Auto Layout,为什么你还是害怕写UITabelView的自适应布局?
    Objective-C 相关Category2
    Objective-C 相关Category
    Mac 破解Adobe Photoshop CS6
    leetcode@ [315/215] Count of Smaller Numbers After Self / Kth Largest Element in an Array (BST)
  • 原文地址:https://www.cnblogs.com/xiongmao-cpp/p/6428417.html
Copyright © 2020-2023  润新知