• hdu 2857 点在直线上的投影+直线的交点


    Mirror and Light

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 814    Accepted Submission(s): 385


    Problem Description
    The light travels in a straight line and always goes in the minimal path between two points, are the basic laws of optics.

    Now, our problem is that, if a branch of light goes into a large and infinite mirror, of course,it will reflect, and leave away the mirror in another direction. Giving you the position of mirror and the two points the light goes in before and after the reflection, calculate the reflection point of the light on the mirror.
      
    You can assume the mirror is a straight line and the given two points can’t be on the different sizes of the mirror.
     
    Input
    The first line is the number of test case t(t<=100).
      
    The following every four lines are as follow:
      X1 Y1
      X2 Y2
      Xs Ys
      Xe Ye

      (X1,Y1),(X2,Y2) mean the different points on the mirror, and (Xs,Ys) means the point the light travel in before the reflection, and (Xe,Ye) is the point the light go after the reflection.

      The eight real number all are rounded to three digits after the decimal point, and the absolute values are no larger than 10000.0.
     
    Output
      Each lines have two real number, rounded to three digits after the decimal point, representing the position of the reflection point.
     
    Sample Input
    1 0.000 0.000 4.000 0.000 1.000 1.000 3.000 1.000
     
    Sample Output
    2.000 0.000
     
    Source

    题目大意:给一面镜子(一直线),给一入射光经过的点跟反射光经过的点,求入射点。

    思路:求一个点关于镜子的对称点,与另一点与镜子的交点就是入射点。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 using namespace std;
     6 
     7 const double eps=1e-10;
     8 const double Pi=acos(-1.0);
     9 struct Point
    10 {
    11     double x,y;
    12     Point(double x=0,double y=0):x(x),y(y) {}
    13 };
    14 typedef Point Vector;
    15 Vector operator +(Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
    16 Vector operator -(Vector A,Vector B){return Vector(A.x-B.x,A.y-B.y);}
    17 Vector operator *(Vector A,double p){return Vector(A.x*p,A.y*p);}
    18 int dcmp(double x)
    19 {
    20     if(fabs(x)<eps) return 0;
    21     else return x<0?-1:1;
    22 }
    23 
    24 double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}//点积
    25 double Length(Vector A){return sqrt(Dot(A,A));}//向量的长度
    26 double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));}//两向量的夹角
    27 double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x;}//叉积
    28 Point GetLineProjection(Point P,Point A,Point B)//P在直线AB上的投影点
    29 {
    30     Vector v=B-A;
    31     return A+v*(Dot(v,P-A)/Dot(v,v));
    32 }
    33 Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)//两直线的交点
    34 {
    35     Vector u=P-Q;
    36     double t=Cross(w,u)/Cross(v,w);
    37     return P+v*t;
    38 }
    39 
    40 Point read_point()
    41 {
    42     Point p;
    43     scanf("%lf%lf",&p.x,&p.y);
    44     return p;
    45 }
    46 int main()
    47 {
    48     int t;
    49     Point p1,p2,p3,p4,p5;
    50     scanf("%d",&t);
    51     while(t--)
    52     {
    53         p1=read_point();p2=read_point();p3=read_point();p4=read_point();
    54         p5= GetLineProjection(p3,p1,p2);
    55         p5=p3+(p5-p3)*2;
    56         p5=GetLineIntersection(p5,p5-p4,p1,p2-p1);
    57         printf("%.3lf %.3lf
    ",p5.x,p5.y);
    58     }
    59     return 0;
    60 }
  • 相关阅读:
    ASP.NET MVC5 实现网址伪静态
    用c#中的WebBrowser抢小米F码,抢小米手机以及自动测试实现原理
    MVC授权
    使用grid++report打印选中行
    对Spring.Net+NHibenate+Asp.Net Mvc+Easyui框架的个人认识
    hibernate+spring+mvc+Easyui框架模式下使用grid++report的总结
    一个关于Linq对引用类型元素集合去重问题的思考
    Spring MVC PageNotFound.noHandlerFound No mapping found for HTTP request with URI
    ueditor 1.4.3.2 独立/单独 上传图片框原理
    (兼容IE6)又一个提示框思密达,腾讯UED 201401242352
  • 原文地址:https://www.cnblogs.com/xiong-/p/3930489.html
Copyright © 2020-2023  润新知