• UVA 116 Unidirectional TSP(DP最短路字典序)


    Description

    Download as PDF
     

     

     Unidirectional TSP 

    Background

    Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson Problem (TSP) -- finding whether all the cities in a salesperson's route can be visited exactly once with a specified limit on travel time -- is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time to generate, but are simple to check.

    This problem deals with finding a minimal path through a grid of points while traveling only from left to right.

    The Problem

    Given an tex2html_wrap_inline352 matrix of integers, you are to write a program that computes a path of minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix ``wraps'' so that it represents a horizontal cylinder. Legal steps are illustrated below.

    picture25

    The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.

    For example, two slightly different tex2html_wrap_inline366 matrices are shown below (the only difference is the numbers in the bottom row).

    picture37

    The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.

    The Input

    The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by tex2html_wrap_inline376 integers where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.

    For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path's weight will exceed integer values representable using 30 bits.

    The Output

    Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of n integers (separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.

    Sample Input

    5 6
    3 4 1 2 8 6
    6 1 8 2 7 4
    5 9 3 9 9 5
    8 4 1 3 2 6
    3 7 2 8 6 4
    5 6
    3 4 1 2 8 6
    6 1 8 2 7 4
    5 9 3 9 9 5
    8 4 1 3 2 6
    3 7 2 1 2 3
    2 2
    9 10 9 10

    Sample Output

    1 2 3 4 4 5
    16
    1 2 1 5 4 5
    11
    1 1
    19
     1 /*
     2 从前往后推,把所有解找出来再找字典序最小的,WA了。
     3 从后往前推,直接是字典序最小的。
     4 */
     5 #include <iostream>
     6 #include <cstdio>
     7 #include <cstring>
     8 #include <algorithm>
     9 using namespace std;
    10 
    11 const int INF=2000000000;
    12 int d[15][105],dir[3][2]={0,-1,-1,-1,1,-1};
    13 int m,n,a[15][105],next[15][105];
    14 
    15 int main()
    16 {
    17     int i,j,k;
    18     while(~scanf("%d%d",&n,&m))
    19     {
    20         for(i=1;i<=n;i++)for(j=1;j<=m;j++) scanf("%d",&a[i][j]);
    21         memset(next,-1,sizeof(next));
    22         for(i=1;i<=n;i++) d[i][m]=a[i][m];
    23         for(i=1;i<=n;i++) for(j=1;j<m;j++) d[i][j]=INF;
    24         for(i=m;i>=2;i--)
    25         {
    26             for(j=1;j<=n;j++)
    27             {
    28                 for(k=0;k<3;k++)
    29                 {
    30                     int x=((j+dir[k][0]-1)%n+n)%n+1;
    31                     int y=i+dir[k][1];
    32                     if(d[x][y]>d[j][i]+a[x][y])
    33                     {
    34                         d[x][y]=d[j][i]+a[x][y];
    35                         next[x][y]=j;
    36                     }
    37                     else if(d[x][y] == d[j][i]+a[x][y] && next[x][y] > j)
    38                         next[x][y] = j;
    39 
    40                 }
    41             }
    42         }
    43         int ansm=INF,ansi;
    44         for(i=1;i<=n;i++)
    45             if(ansm>d[i][1])
    46             {
    47                 ansm=d[i][1];ansi=i;
    48             }
    49         for(i=1;i<=m;i++)
    50         {
    51             printf(i==1?"%d":" %d",ansi);
    52             ansi=next[ansi][i];
    53         }
    54         printf("
    %d
    ",ansm);
    55     }
    56     return 0;
    57 }
  • 相关阅读:
    队列数据结构与算法JavaScript描述(5)
    栈数据结构与算法Javascript描述(4)
    散列数据结构与算法JavaScript描述(8)
    Evevt Loop、任务队列、定时器等
    OSGi初始篇
    应用服务平台与应用服务器
    数据源相关规范整理
    新手入门:教您最优的J2EE学习经验和流程
    TableView的使用
    Strategy
  • 原文地址:https://www.cnblogs.com/xiong-/p/3894153.html
Copyright © 2020-2023  润新知