• uva 11542 高斯消元


    Square 
    Input: Standard Input

    Output: Standard Output

    Given n integers you can generate 2n-1 non-empty subsets from them. Determine for how many of these subsets the product of all the integers in that is a perfect square. For example for the set {4,6,10,15} there are 3 such subsets. {4}, {6,10,15} and {4,6,10,15}. A perfect square is an integer whose square root is an integer. For example 1, 4, 9,16,…. .

    Input

    Input contains multiple test cases. First line of the input contains T(1≤T≤30) the number of test cases. Each test case consists of 2 lines. First line contains n(1≤n≤100) and second line contains n space separated integers.  All these integers are between 1 and 10^15.  None of these integers is divisible by a prime greater than 500.

    Output

    For each test case output is a single line containing one integer denoting the number of non-empty subsets whose integer product is a perfect square. The input will be such that the result will always fit into signed 64 bit integer.

    Sample Input                              Output for Sample Input

    4

    3

    2 3 5

    3

    6 10 15

    4

    4 6 10 15

    3

    2 2 2

    0

    1

    3

    3

     

    Problemsetter: Abdullah al Mahmud

    Special Thanks to: Manzurur Rahman Khan

    题目大意:给n个整数,从中选1个或多个,他们的积是一个完全平方数。这样的情况有多少种?

    解题思路:选s个整数出来(1<=s<=n),它们的积可以表示成a1^p1*a2.P2....an^pm,要想它是一个完全平方数,那pi必须是偶数。把每个数分解质因数,所有质因数的指数都模2,最后得出一个n*m的矩阵,进行消元,求出矩阵的秩r。那么就有n-r行每个元素都是0。从中选一行或多行(即求一个集合的真子集个数)都符合题目要求。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 using namespace std;
     5 
     6 typedef long long LL;
     7 const int maxn=500;
     8 const int maxm=105;
     9 typedef int Matrix[maxm][maxm];
    10 int prime[maxn],num;
    11 bool flag[maxn];
    12 Matrix A;
    13 
    14 int max(int a,int b){ return a>b?a:b;}
    15 void swap(int& a,int& b){int t=a;a=b;b=t;}
    16 
    17 void get_primes()
    18 {
    19     int i,j;num=0;
    20     memset(flag,1,sizeof(flag));
    21     for(i=2;i<maxn;i++)
    22     {
    23         if(flag[i])prime[num++]=i;
    24         for(j=0;j<num&&i*prime[j]<maxn;j++)
    25         {
    26             flag[i*prime[j]]=false;
    27             if(i%prime[j]==0) break;
    28         }
    29     }
    30 }
    31 
    32 int rank(int n,int m)
    33 {
    34     int i=0,j=0,k,r,u;
    35     while(i<n&&j<m)
    36     {
    37         r=i;
    38         for(k=i;k<n;k++)
    39             if(A[k][j]){r=k;break;}
    40         if(A[r][j])
    41         {
    42                if(r!=i) for(k=0;k<=m;k++) swap(A[r][k],A[i][k]);
    43             for(u=i+1;u<n;u++) if(A[u][j])
    44             for(k=i;k<=m;k++) A[u][k]^=A[i][k];
    45                 i++;
    46         }
    47         j++;
    48     }
    49     return i;
    50 }
    51 
    52 LL Pow(LL a,LL b)
    53 {
    54     LL ret=1;
    55     while(b)
    56     {
    57         if(b&1) ret*=a;
    58         a*=a;b>>=1;
    59     }
    60     return ret;
    61 }
    62 
    63 int main()
    64 {
    65     get_primes();
    66     int i,j,t,n,maxp;
    67     LL p;
    68     scanf("%d",&t);
    69     while(t--)
    70     {
    71         scanf("%d",&n);
    72         memset(A,0,sizeof(A));
    73         maxp=0;
    74         for(i=0;i<n;i++)
    75         {
    76             scanf("%lld",&p);
    77             for(j=0;j<num;j++)
    78             {
    79                 if(p==1) break;
    80                 while(p%prime[j]==0)
    81                 {
    82                     maxp=max(maxp,j);
    83                     p/=prime[j];
    84                     A[i][j]^=1;
    85                 }
    86             }
    87         }
    88         int r=rank(n,maxp+1);
    89         printf("%lld
    ",Pow(2,n-r)-1);    
    90     }
    91     return 0;
    92 }
  • 相关阅读:
    常见二叉树问题
    leetcode上回溯法的使用
    搜索+回溯
    navicat连接登录windows10本地wsl的数据库
    皇后问题
    拓扑排序
    三路排序算法
    在 ServiceModel 客户端配置部分中,找不到引用协定“WebServiceTest.WebServiceSoap”的默认终结点元素。这可能是因为未找到应用程序的配置文件,或者是因为客户端元素
    WCF异常信息
    C# 制作ZIP压缩包
  • 原文地址:https://www.cnblogs.com/xiong-/p/3862915.html
Copyright © 2020-2023  润新知