• hud 4746 莫比乌斯反演


    Mophues

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 327670/327670 K (Java/Others)
    Total Submission(s): 579    Accepted Submission(s): 235


    Problem Description
    As we know, any positive integer C ( C >= 2 ) can be written as the multiply of some prime numbers:
        C = p1×p2× p3× ... × pk
    which p1, p2 ... pk are all prime numbers.For example, if C = 24, then:
        24 = 2 × 2 × 2 × 3
        here, p1 = p2 = p3 = 2, p4 = 3, k = 4

    Given two integers P and C. if k<=P( k is the number of C's prime factors), we call C a lucky number of P.

    Now, XXX needs to count the number of pairs (a, b), which 1<=a<=n , 1<=b<=m, and gcd(a,b) is a lucky number of a given P ( "gcd" means "greatest common divisor").

    Please note that we define 1 as lucky number of any non-negative integers because 1 has no prime factor.
     
    Input
    The first line of input is an integer Q meaning that there are Q test cases.
    Then Q lines follow, each line is a test case and each test case contains three non-negative numbers: n, m and P (n, m, P <= 5×105. Q <=5000).
     
    Output
    For each test case, print the number of pairs (a, b), which 1<=a<=n , 1<=b<=m, and gcd(a,b) is a lucky number of P.
     
    Sample Input
    2 10 10 0 10 10 1
     
    Sample Output
    63 93
     
    Source
     
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    using namespace std;
    
    typedef __int64 LL;
    const int maxn=5*1e5+5;
    int prime[maxn],mu[maxn],num,cnt[maxn],mbs[maxn][20];
    bool flag[maxn];
    void swap(int &a,int &b){ int t=a;a=b;b=t;}
    int min(int a,int b){return a<b?a:b;}
    
    void init()
    {
        int i,j;
        mu[1]=1;cnt[1]=0;
        memset(flag,true,sizeof(flag));
        for(i=2;i<maxn;i++)
        {
            if(flag[i])
            {
                prime[num++]=i;mu[i]=-1;cnt[i]=1;
            }
            for(j=0;j<num&&i*prime[j]<maxn;j++)
            {
                flag[i*prime[j]]=false;
                cnt[i*prime[j]]=cnt[i]+1;
                if(i%prime[j]==0)
                {
                    mu[i*prime[j]]=0;break;
                }
                else mu[i*prime[j]]=-mu[i];
            }
        }
        memset(mbs,0,sizeof(mbs));
        for(i=1;i<maxn;i++)//求出单项的mbs[i][j],表示的是i为公因子时的情况。
        for(j=i;j<maxn;j+=i)
            mbs[j][cnt[i]]+=mu[j/i];
        for(i=1;i<maxn;i++)  //以下是求前缀和
        for(j=0;j<19;j++)
            mbs[i][j]+=mbs[i-1][j];
        for(i=0;i<maxn;i++)
        for(j=1;j<19;j ++)
            mbs[i][j]+=mbs[i][j-1];
    }
    
    int main()
    {
        num=0;
        init();
        int i,j,t,n,m,p;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d %d %d",&n,&m,&p);
            if(p>=19){ printf("%I64d
    ",(LL)n*m);continue;}
            if(n>m) swap(n,m);
            LL ans=0;
            for(i=1,j=1;i<n;i=j+1)
            {
                j=min(n/(n/i),m/(m/i));
                ans+=(LL)(mbs[j][p]-mbs[i-1][p])*(n/i)*(m/i);
            }
            printf("%I64d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    507. Perfect Number
    Dos与Linux的断行字符
    724. Find Pivot Index
    110. Balanced Binary Tree
    掌握numpy(三)
    掌握numpy(二)
    掌握numpy(一)
    203. Remove Linked List Elements
    25个Java机器学习工具和库
    贝叶斯学习--极大后验概率假设和极大似然假设
  • 原文地址:https://www.cnblogs.com/xiong-/p/3849772.html
Copyright © 2020-2023  润新知