• uva 11997 优先队列


    K Smallest Sums

    You're given k arrays, each array has k integers. There are kk ways to pick exactly one element in each array and calculate the sum of the integers. Your task is to find the k smallest sums among them.

    Input

    There will be several test cases. The first line of each case contains an integer k (2<=k<=750). Each of the following k lines contains k positive integers in each array. Each of these integers does not exceed 1,000,000. The input is terminated by end-of-file (EOF). The size of input file does not exceed 5MB.

    Output

    For each test case, print the k smallest sums, in ascending order.

    Sample Input

    3
    1 8 5
    9 2 5
    10 7 6
    2
    1 1
    1 2
    

    Output for the Sample Input

    9 10 12
    2 2

    题目大意:给k个数组各含k个整数,求每个数组中取一个元素他们的和最小的前k个。
    分析:一共有k的k次方个和,先看只有两个数组的情况(从小到大排好序的)
    1 2 3 ...
    1 A1+B1<=A1+B2<=A1+B3.....
    2 A2+B1<=A2+B2<=A2+B3.....
    ...........................
    若计算两两之和需k的平方次不可取(时间复杂度O(n的平方))
    用优先队列找出最小的前k个和(时间复杂度O(nlogn))
    由上面的表格知,第一行的k个元素在它所在列中是和最小的,但不是最小的前k个
    把第一行的元素放入优先队列中,把队列的顶部元素提取出来,它是队列中最小的(A[a]+B[b])
    也是两两之和中未被提取出来的最小的,把与它最相近的即比它大或等于它的(A[a]+B[b+1])
    元素放入队列中。
    以此类推提取出来的k个元素是最小的前k个。
    两两数组合并从而求得最后结果。

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<queue>
    using namespace std;
    
    const int Max=755;
    int A[Max][Max];
    
    struct Item
    {
        int s,b;
        Item() {}
        Item(int s,int b):s(s),b(b) {}
        bool operator < (const Item &a)const{
            return a.s<s;
        }
    }item;
    
    void merge(int *A,int *B,int *C,int n)
    {
        priority_queue<Item> pq;
        int i,b;
        for(i=0;i<n;i++) pq.push(Item(A[i]+B[0],0));
        for(i=0;i<n;i++)
        {
            item=pq.top();pq.pop();
            C[i]=item.s;b=item.b;
            if(b+1<n) pq.push(Item(C[i]-B[b]+B[b+1],b+1));
        }
    }
    int main()
    {
        int n,i,j;
        while(~scanf("%d",&n))
        {
            for(i=0;i<n;i++)
            {
                for(j=0;j<n;j++) scanf("%d",&A[i][j]);
                sort(A[i],A[i]+n);
            }
            for(i=1;i<n;i++)
                merge(A[0],A[i],A[0],n);
            for(i=0;i<n;i++) printf(i?" %d":"%d",A[0][i]);
            printf("
    ");
        }
        return 0;
    }
    
    
    
     
  • 相关阅读:
    学习笔记: yield迭代器
    学习笔记: 委托解析和封装,事件及应用
    学习笔记: MD5/DES/RSA三类加密,SSL协议解析
    学习笔记: Expression表达式目录树详解和扩展封装
    学习笔记: Expression表达式目录树详解和扩展封装
    学习笔记: IO操作及序列化
    数据类型转换
    短路运算(逻辑运算是短路运算中最常见的一种)
    清除浮动
    css初始化
  • 原文地址:https://www.cnblogs.com/xiong-/p/3534820.html
Copyright © 2020-2023  润新知