题目大意:给两条线段求他们间的最小距离的平方(以分数形式输出)。
贴个模版吧!太抽象了。
#include<cstdio> #include<cmath> #include<algorithm> using namespace std; struct Point3 { int x, y, z; Point3(int x=0, int y=0, int z=0):x(x),y(y),z(z) { } }; typedef Point3 Vector3; Vector3 operator + (const Vector3& A, const Vector3& B) { return Vector3(A.x+B.x, A.y+B.y, A.z+B.z); } Vector3 operator - (const Point3& A, const Point3& B) { return Vector3(A.x-B.x, A.y-B.y, A.z-B.z); } Vector3 operator * (const Vector3& A, int p) { return Vector3(A.x*p, A.y*p, A.z*p); } bool operator == (const Point3& a, const Point3& b) { return a.x==b.x && a.y==b.y && a.z==b.z; } Point3 read_point3() { Point3 p; scanf("%d%d%d", &p.x, &p.y, &p.z); return p; } int Dot(const Vector3& A, const Vector3& B) { return A.x*B.x + A.y*B.y + A.z*B.z; } int Length2(const Vector3& A) { return Dot(A, A); } Vector3 Cross(const Vector3& A, const Vector3& B) { return Vector3(A.y*B.z - A.z*B.y, A.z*B.x - A.x*B.z, A.x*B.y - A.y*B.x); } typedef long long LL; LL gcd(LL a, LL b) { return b ? gcd(b, a%b) : a; } LL lcm(LL a, LL b) { return a / gcd(a,b) * b; } struct Rat { LL a, b; Rat(LL a=0):a(a),b(1) { } Rat(LL x, LL y):a(x),b(y) { if(b < 0) a = -a, b = -b; LL d = gcd(a, b); if(d < 0) d = -d; a /= d; b /= d; } }; Rat operator + (const Rat& A, const Rat& B) { LL x = lcm(A.b, B.b); return Rat(A.a*(x/A.b)+B.a*(x/B.b), x); } Rat operator - (const Rat& A, const Rat& B) { return A + Rat(-B.a, B.b); } Rat operator * (const Rat& A, const Rat& B) { return Rat(A.a*B.a, A.b*B.b); } void updatemin(Rat& A, const Rat& B) { if(A.a*B.b > B.a*A.b) A.a = B.a, A.b = B.b; } // 点P到线段AB的距离的平方 Rat Rat_Distance2ToSegment(const Point3& P, const Point3& A, const Point3& B) { if(A == B) return Length2(P-A); Vector3 v1 = B - A, v2 = P - A, v3 = P - B; if(Dot(v1, v2) < 0) return Length2(v2); else if(Dot(v1, v3) > 0) return Length2(v3); else return Rat(Length2(Cross(v1, v2)), Length2(v1)); } // 求异面直线p1+su和p2+tv的公垂线对应的s。如果平行/重合,返回false bool Rat_LineDistance3D(const Point3& p1, const Vector3& u, const Point3& p2, const Vector3& v, Rat& s) { LL b = (LL)Dot(u,u)*Dot(v,v) - (LL)Dot(u,v)*Dot(u,v); if(b == 0) return false; LL a = (LL)Dot(u,v)*Dot(v,p1-p2) - (LL)Dot(v,v)*Dot(u,p1-p2); s = Rat(a, b); return true; } void Rat_GetPointOnLine(const Point3& A, const Point3& B, const Rat& t, Rat& x, Rat& y, Rat& z) { x = Rat(A.x) + Rat(B.x-A.x) * t; y = Rat(A.y) + Rat(B.y-A.y) * t; z = Rat(A.z) + Rat(B.z-A.z) * t; } Rat Rat_Distance2(const Rat& x1, const Rat& y1, const Rat& z1, const Rat& x2, const Rat& y2, const Rat& z2) { return (x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2); } int main() { int T; scanf("%d", &T); LL maxx = 0; while(T--) { Point3 A = read_point3(); Point3 B = read_point3(); Point3 C = read_point3(); Point3 D = read_point3(); Rat s, t; bool ok = false; Rat ans = Rat(1000000000); if(Rat_LineDistance3D(A, B-A, C, D-C, s)) if(s.a > 0 && s.a < s.b && Rat_LineDistance3D(C, D-C, A, B-A, t)) if(t.a > 0 && t.a < t.b) { ok = true; // 异面直线/相交直线 Rat x1, y1, z1, x2, y2, z2; Rat_GetPointOnLine(A, B, s, x1, y1, z1); Rat_GetPointOnLine(C, D, t, x2, y2, z2); ans = Rat_Distance2(x1, y1, z1, x2, y2, z2); } if(!ok) { // 平行直线/重合直线 updatemin(ans, Rat_Distance2ToSegment(A, C, D)); updatemin(ans, Rat_Distance2ToSegment(B, C, D)); updatemin(ans, Rat_Distance2ToSegment(C, A, B)); updatemin(ans, Rat_Distance2ToSegment(D, A, B)); } printf("%lld %lld ", ans.a, ans.b); } return 0; }