• LA 2218 半平面交


     题目大意:n名选手参加铁人三项赛,比赛按照选手在三个赛段中所用的总时间排定名次。已知每名选手在三个项目中的速度Ui、Vi、Wi。
    问对于选手i,能否通过适当的安排三个赛段的长度(但每个赛段的长度都不能为0),来保证他获胜。

    分析:假设三个赛段的长度分别为x、y、z,则选手i获胜的充要条件就是:

     x/vi+y/ui+(1-x-y)/wi<x/vj+y/uj+(1-x-y)/wj

    整理成Ax+By+C>0

    本题就转化为求这n-1个不等式对应的半平面的交,加上x>0,y>0,1-x-y>0这三个约束,并判断其面积是否大于0(即排除空集、点、线的情况)。

    #include<cstdio>
    #include<cmath>
    #include<vector>
    #include<algorithm>
    using namespace std;
    
    struct Point {
    	double x, y;
    	Point(double x=0, double y=0):x(x),y(y) { }
    };
    
    typedef Point Vector;
    
    Vector operator + (const Vector& A, const Vector& B) { return Vector(A.x+B.x, A.y+B.y); }
    Vector operator - (const Point& A, const Point& B) { return Vector(A.x-B.x, A.y-B.y); }
    Vector operator * (const Vector& A, double p) { return Vector(A.x*p, A.y*p); }
    double Dot(const Vector& A, const Vector& B) { return A.x*B.x + A.y*B.y; }
    double Cross(const Vector& A, const Vector& B) { return A.x*B.y - A.y*B.x; }
    double Length(const Vector& A) { return sqrt(Dot(A, A)); }
    Vector Normal(const Vector& A) { double L = Length(A); return Vector(-A.y/L, A.x/L); }
    
    // 有向直线。它的左边就是对应的半平面
    struct Line {
    	Point P;    // 直线上任意一点
    	Vector v;   // 方向向量
    	double ang; // 极角,即从x正半轴旋转到向量v所需要的角(弧度)
    	Line() {}
    	Line(Point P, Vector v):P(P),v(v){ ang = atan2(v.y, v.x); }
    	bool operator < (const Line& L) const {
    		return ang < L.ang;
    	}
    };
    
    // 点p在有向直线L的左边(线上不算)
    bool OnLeft(const Line& L, const Point& p) {
    	return Cross(L.v, p-L.P) > 0;
    }
    
    // 二直线交点,假定交点惟一存在
    Point GetLineIntersection(const Line& a, const Line& b) {
    	Vector u = a.P-b.P;
    	double t = Cross(b.v, u) / Cross(a.v, b.v);
    	return a.P+a.v*t;
    }
    
    const double INF = 1e8;
    const double eps = 1e-6;
    
    // 半平面交主过程
    vector<Point> HalfplaneIntersection(vector<Line> L) {
    	int n = L.size();
    	sort(L.begin(), L.end()); // 按极角排序
    	int first, last,i;         // 双端队列的第一个元素和最后一个元素的下标
    	vector<Point> p(n);      // p[i]为q[i]和q[i+1]的交点
    	vector<Line> q(n);       // 双端队列
    	vector<Point> ans;       // 结果
    	q[first=last=0] = L[0];  // 双端队列初始化为只有一个半平面L[0]
    	for(i = 1; i < n; i++) 
    	{
    		while(first < last && !OnLeft(L[i], p[last-1])) last--;
    		while(first < last && !OnLeft(L[i], p[first])) first++;
    		q[++last] = L[i];
    		if(fabs(Cross(q[last].v, q[last-1].v)) < eps) { // 两向量平行且同向,取内侧的一个
    			last--;
    			if(OnLeft(q[last], L[i].P)) q[last] = L[i];
    		}
    		if(first < last) p[last-1] = GetLineIntersection(q[last-1], q[last]);
    	}
    	while(first < last && !OnLeft(q[first], p[last-1])) last--; // 删除无用平面
    	if(last - first <= 1) return ans; // 空集
    	p[last] = GetLineIntersection(q[last], q[first]); // 计算首尾两个半平面的交点
    	
    	// 从deque复制到输出中
    	for(i = first; i <= last; i++) ans.push_back(p[i]);
    	return ans;
    }
    
    const int maxn = 100 + 10;
    int V[maxn], U[maxn], W[maxn];
    int main()
    {
    	int n,i,j,ok;
    	double k;
    	while(scanf("%d", &n) == 1 && n)
    	{
    		for(i = 0; i < n; i++) scanf("%d%d%d", &V[i], &U[i], &W[i]);
    		for(i = 0; i < n; i++) 
    		{
    			ok = 1;
    			k = 10000;
    			vector<Line> L;
    			for(j = 0; j < n; j++) if(i != j) 
    			{
    				if(V[i] <= V[j] && U[i] <= U[j] && W[i] <= W[j]) { ok = 0; break; }
    				if(V[i] >= V[j] && U[i] >= U[j] && W[i] >= W[j]) continue;
    				// x/V[i]+y/U[i]+(1-x-y)/W[i] < x/V[j]+y/U[j]+(1-x-y)/W[j]
    				// ax+by+c>0
    				double a = (k/V[j]-k/W[j]) - (k/V[i]-k/W[i]);
    				double b = (k/U[j]-k/W[j]) - (k/U[i]-k/W[i]);
    				double c = k/W[j] - k/W[i];
    				Point P;
    				Vector v(b, -a);
                                    //避免误差:避免较小的数作除数

    if(fabs(a) > fabs(b)) P = Point(-c/a, 0); else P = Point(0, -c/b); L.push_back(Line(P, v)); } if(ok) { // x>0, y>0, x+y<1 ==> -x-y+1>0 L.push_back(Line(Point(0, 0), Vector(0, -1))); L.push_back(Line(Point(0, 0), Vector(1, 0))); L.push_back(Line(Point(0, 1), Vector(-1, 1))); vector<Point> poly = HalfplaneIntersection(L); if(poly.empty()) ok = 0; } if(ok) printf("Yes "); else printf("No "); } } return 0; }
  • 相关阅读:
    Python基础学习九 数据库备份
    Python基础学习八 写日志
    Python 小练习三 发邮件
    Python基础补充(二) 多核CPU上python多线程并行的一个假象【转】
    pat 1118 Birds in Forest (25分) 并查集
    Java Map实现按value从大到小排序
    java实现排列组合(通俗易懂)
    java实现24点游戏代码
    eclipse搭建struts2环境及所遇到的问题
    java非常好用的读取文件的流的代码
  • 原文地址:https://www.cnblogs.com/xiong-/p/3430343.html
Copyright © 2020-2023  润新知