块设备的驱动比字符设备的难,这是因为块设备的驱动和内核的联系进一步增大,但是同时块设备的访问的几个基本结构和字符还是有相似之处的。
有一句话必须记住:对于存储设备(硬盘~~带有机械的操作)而言,调整读写的顺序作用巨大,因为读写连续的扇区比分离的扇区快。
但是同时:SD卡和U盘这类设备没有机械上的限制,所以像上面说的进行连续扇区的调整显得就没有必要了。
先说一下对于硬盘这类设备的简单的驱动。
在linux的内核中,使用gendisk结构来表示一个独立的磁盘设备或者分区。这个结构中包含了磁盘的主设备号,次设备号以及设备名称。
在国嵌给的历程中,对gendisk这个结构体的填充是在simp_blkdev_init函数中完成的。在对gendisk这个结构填充之前要对其进行分配空间。具体代码如下:
simp_blkdev_disk = alloc_disk(1); if (!simp_blkdev_disk) { ret = -ENOMEM; goto err_alloc_disk; }
这里的alloc_disk函数是在内核中实现的,它后面的参数1代表的是使用次设备号的数量,这个数量是不能被修改的。
在分配好了关于gendisk的空间以后就开始对gendisk里面的成员进行填充。具体代码如下:
strcpy(simp_blkdev_disk->disk_name, SIMP_BLKDEV_DISKNAME); //宏定义simp_blkdev simp_blkdev_disk->major = SIMP_BLKDEV_DEVICEMAJOR; //主设备号 simp_blkdev_disk->first_minor = 0; //次设备号 simp_blkdev_disk->fops = &simp_blkdev_fops; //主要结构 simp_blkdev_disk->queue = simp_blkdev_queue; set_capacity(simp_blkdev_disk, SIMP_BLKDEV_BYTES>>9); //宏定义(16*1024*1024),实际上就是这个结构体。
在填充好gendisk这个结构以后向内核中 注册这个磁盘设备。具体代码如下:
add_disk(simp_blkdev_disk);
在LDD中说,想内核中注册设备的必须在gendisk这个结构体已经填充好了以后,我们以前的字符设备的时候也是这么做的,不知道为什么LDD在这里强调了这个。
当不需要一个磁盘的时候要释放gendisk,释放部分的代码在函数simp_blkdev_exit中实现的。具体的释放代码如下:
del_gendisk(simp_blkdev_disk);
在simp_blkdev_exit中同时还有put_disk(simp_blkdev_disk),这个是用来进行操作gendisk的引用计数。simp_blkdev_exit还实现了blk_cleanup_queue清除请求队列的这个函数。终于说到请求队列了。
在说等待队列之前先要明确几个概念:
①用户希望对硬盘数据做的事情叫做请求,这个请求和IO请求是一样的,所以IO请求来自于上层。
②每一个IO请求对应内核中的一个bio结构。
③IO调度算法可以将连续的bio(也就是用户的对硬盘数据的相邻簇的请求)合并成一个request。
④多个request就是一个请求队列,这个请求队列的作用就是驱动程序响应用户的需求的队列。
请求队列在国嵌的程序中的simp_blkdev_queue
下面先说一下硬盘这类带有机械的存储设备的驱动。
这类驱动中用户的IO请求对应于硬盘上的簇可能是连续的,可能是不连续的,连续的当然好,如果要是不连续的,那么IO调度器就会对这些BIO进行排序(例如老谢说的电梯调度算法),合并成一个request,然后再接收请求,再合并成一个request,多个request之后那么我们的请求队列就形成了,然后就可以向驱动程序提交了。
在硬盘这类的存储设备中,请求队列的初始化代码如下:
simp_blkdev_queue = blk_init_queue(simp_blkdev_do_request, NULL);
老谢说,在这种情况下首先调用的是内核中的make_requst函数,然后再调用自己定义的simp_blkdev_do_request。追了一下内核代码,会发现make_requst内核代码如下所示:
static int make_request(struct request_queue *q, struct bio * bio)
具体的就不贴了,不过可以知道这个make_request的作用就是使用IO调度器对多个bio的访问顺序进行了优化调整合并为一个request。也就是在执行完成了这个函数之后才去正式的执行内核的请求队列。
合并后的request其实还是一个结构,这个结构用来表征IO的请求,这个结构在内核中有具体的定义。
请求是一个结构,同时请求队列也是一个结构,这个请求队列在内核中的结构定义如下:
struct request_queue { /* * Together with queue_head for cacheline sharing */ struct list_head queue_head; struct request *last_merge; struct elevator_queue *elevator; /* * the queue request freelist, one for reads and one for writes */ struct request_list rq; request_fn_proc *request_fn; make_request_fn *make_request_fn; prep_rq_fn *prep_rq_fn; unplug_fn *unplug_fn; merge_bvec_fn *merge_bvec_fn; prepare_flush_fn *prepare_flush_fn; softirq_done_fn *softirq_done_fn; rq_timed_out_fn *rq_timed_out_fn; dma_drain_needed_fn *dma_drain_needed; lld_busy_fn *lld_busy_fn; /* * Dispatch queue sorting */ sector_t end_sector; struct request *boundary_rq; /* * Auto-unplugging state */ struct timer_list unplug_timer; int unplug_thresh; /* After this many requests */ unsigned long unplug_delay; /* After this many jiffies */ struct work_struct unplug_work; struct backing_dev_info backing_dev_info; /* * The queue owner gets to use this for whatever they like. * ll_rw_blk doesn't touch it. */ void *queuedata; /* * queue needs bounce pages for pages above this limit */ gfp_t bounce_gfp; /* * various queue flags, see QUEUE_* below */ unsigned long queue_flags; /* * protects queue structures from reentrancy. ->__queue_lock should * _never_ be used directly, it is queue private. always use * ->queue_lock. */ spinlock_t __queue_lock; spinlock_t *queue_lock; /* * queue kobject */ struct kobject kobj; /* * queue settings */ unsigned long nr_requests; /* Max # of requests */ unsigned int nr_congestion_on; unsigned int nr_congestion_off; unsigned int nr_batching; void *dma_drain_buffer; unsigned int dma_drain_size; unsigned int dma_pad_mask; unsigned int dma_alignment; struct blk_queue_tag *queue_tags; struct list_head tag_busy_list; unsigned int nr_sorted; unsigned int in_flight[2]; unsigned int rq_timeout; struct timer_list timeout; struct list_head timeout_list; struct queue_limits limits; /* * sg stuff */ unsigned int sg_timeout; unsigned int sg_reserved_size; int node; #ifdef CONFIG_BLK_DEV_IO_TRACE struct blk_trace *blk_trace; #endif /* * reserved for flush operations */ unsigned int ordered, next_ordered, ordseq; int orderr, ordcolor; struct request pre_flush_rq, bar_rq, post_flush_rq; struct request *orig_bar_rq; struct mutex sysfs_lock; #if defined(CONFIG_BLK_DEV_BSG) struct bsg_class_device bsg_dev; #endif };
LDD说,请求队列实现了一个插入接口,这个接口允许使用多个IO调度器,大部分IO调度器批量累计IO请求,并将它们排列为递增或者递减的顺序提交给驱动。
多个连续的bio会合并成为一个request,多个request就成为了一个请求队列,这样bio的是直接的也是最基本的请求,bio这个结构的定义如下:
struct bio { sector_t bi_sector; struct bio *bi_next; /* request queue link */ struct block_device *bi_bdev; /* target device */ unsigned long bi_flags; /* status, command, etc */ unsigned long bi_rw; /* low bits: r/w, high: priority */ unsigned int bi_vcnt; /* how may bio_vec's */ unsigned int bi_idx; /* current index into bio_vec array */ unsigned int bi_size; /* total size in bytes */ unsigned short bi_phys_segments; /* segments after physaddr coalesce*/ unsigned short bi_hw_segments; /* segments after DMA remapping */ unsigned int bi_max; /* max bio_vecs we can hold used as index into pool */ struct bio_vec *bi_io_vec; /* the actual vec list */ bio_end_io_t *bi_end_io; /* bi_end_io (bio) */ atomic_t bi_cnt; /* pin count: free when it hits zero */ void *bi_private; bio_destructor_t *bi_destructor; /* bi_destructor (bio) */ };
需要注意的是,在bio这个结构中最重要的是bio.vec这个结构。同时还有许多操作bio的宏,这些都是内核给实现好了的。
请求队列的实现:
首先使用 while ((req = elv_next_request(q)) != NULL)进行循环检测,看看到底传来的IO请求是个什么。
然后进行读写区域的判定:
if ((req->sector + req->current_nr_sectors) << 9 > SIMP_BLKDEV_BYTES) { printk(KERN_ERR SIMP_BLKDEV_DISKNAME ": bad request: block=%llu, count=%u ", (unsigned long long)req->sector, req->current_nr_sectors); //结束本次请求。 end_request(req, 0); continue; }
在进行读写区域的判定的时候涉及到了很多linux的编程习惯。
sector表示要访问的第一个扇区。
current_nr_sectors表示预计访问扇区的数目。
这里的左移九位其实就是乘以512。
这样((req->sector + req->current_nr_sectors) << 9就计算出可以预计要访问的扇区的大小。进行了一次判断。
如果上面的判断没有超出范围,那么就可以对请求的这一部分块设备进行操作了。
simp_blkdev_disk = alloc_disk(1); if (!simp_blkdev_disk) { ret = -ENOMEM; goto err_alloc_disk; } strcpy(simp_blkdev_disk->disk_name, SIMP_BLKDEV_DISKNAME); simp_blkdev_disk->major = SIMP_BLKDEV_DEVICEMAJOR; simp_blkdev_disk->first_minor = 0; simp_blkdev_disk->fops = &simp_blkdev_fops; simp_blkdev_disk->queue = simp_blkdev_queue; set_capacity(simp_blkdev_disk, SIMP_BLKDEV_BYTES>>9); add_disk(simp_blkdev_disk); return 0;
关于gendisk结构的内存分配和成员的填充和硬盘类块设备是一样的。
由于SD卡和U盘属于一类非机械类的设备,所以我们不需要那么复杂的调度算法,也就是不需要把io请求进行排序,所以我们需要自己为自己分配一个请求队列。具体代码如下:
simp_blkdev_queue = blk_alloc_queue(GFP_KERNEL);
需要注意一下的是在硬盘类块设备的驱动中这个函数的原型是blk_init_queue(simp_blkdev_do_request, NULL);
在这种情况下其实并没有调用内核的make_request(这个函数的功能上文说过),也就是说我们接下来要绑定的simp_blkdev_make_request这个函数和make_request是同一级别的函数。这里就没有涉及到算法调度的问题了。
然后需要进行的工作是:绑定制造请求函数和请求队列。具体代码如下:
blk_queue_make_request(simp_blkdev_queue, simp_blkdev_make_request);
把gendisk的结构成员都添加好了以后就可以执行add_disk(simp_blkdev_disk);这个函数把这块分区添加进内核了。
整体列出制造请求部分的函数。
//这个条件是在判断当前正在运行的内核版本。 #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24) bio_endio(bio, 0, -EIO); #else bio_endio(bio, -EIO); #endif return 0; } dsk_mem = simp_blkdev_data + (bio->bi_sector << 9); //遍历 bio_for_each_segment(bvec, bio, i) { void *iovec_mem; switch (bio_rw(bio)) { case READ: case READA: iovec_mem = kmap(bvec->bv_page) + bvec->bv_offset; memcpy(iovec_mem, dsk_mem, bvec->bv_len); kunmap(bvec->bv_page); break; case WRITE: iovec_mem = kmap(bvec->bv_page) + bvec->bv_offset; memcpy(dsk_mem, iovec_mem, bvec->bv_len); kunmap(bvec->bv_page); break; default: printk(KERN_ERR SIMP_BLKDEV_DISKNAME ": unknown value of bio_rw: %lu ", bio_rw(bio)); #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24) bio_endio(bio, 0, -EIO); #else bio_endio(bio, -EIO); #endif return 0; } dsk_mem += bvec->bv_len; } #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24) bio_endio(bio, bio->bi_size, 0); #else bio_endio(bio, 0); #endif return 0; }