• 机器学习实现线性梯度算实现octave


    最近一直在查找机器学习实现之类的问题,今天正好有机会和大家共享一下.

        

    感悟

        机器学习,感到就是数值分析等数学课程在盘算机上的一个应用。让我想起了理查德.费曼说的“数学之于物理就像做爱之于手淫"那句经典的台词,呵呵。

        Octave, scilab,matlab这三种数学具工,编程风格兼容,而前两者是开源,后一是要收费的,对于机器学习说来Octave已够用,所以还是选择Octave来实现吧。

        这里不对机器学习的识知做过多释解,因为有个哥们讲的真是太好了:Andrew Ng。课程义讲等(Handouts and Materials)。

        

    批量线性规划代码

    ##batch_gradient.m
    
    ## -*- texinfo -*-
    ## @deftypefn {Function File} {} [ theta ] = batch_gradient ( x, y)
    ## Return the parameter of linear founction where y = theta[2:n+1]*x + theta(1).
    ##	where n is the row of matrix x.
    ## It use batch gradient algorithm obviously.
    ## For example:
    ##
    ## @example
    ## @group
    ## x=[1 4;2 5;5 1; 4 2] y = [ 19 26 19 20]
    ## batch_gradient (x, y)
    ##   @result{} [0.0060406   2.9990063   3.9990063]
    ## @end group
    ## @end example
    ## @seealso{stichastic_gradient}
    ## @end deftypefn
    ## Author: xiuleili <xiuleili@XIULEILI>
    ## Created: 2013-04-26
    
    function [ theta ] = batch_gradient ( x, y)
    [n,m]=size(x);
    [my,ny]=size(y);
    theta = rand(1, m+1);
    if(ny ~= n | my!= 1)
    	error("Error: x should be a matrix with(n,m) and y must be (1,n), where n is the count of training samples.");
    end;
    
    one = ones(n,1);
    X = [one x]';
    learning_rate = 0.01;
    error = 1;
    threshold = 0.000001;
    times = 0;
    start_time = clock ();
    while error  > threshold  
    	theta += learning_rate * (y - theta*X) *X';
    	error = sum((theta * X - y).^2) / 2;
    	times += 1;
    	printf("[%d] the current err is: %f", times, error); 
    	disp(theta);
    	if(times > 10000000000)
    		break;
    	end;
    end;
    end_time = clock ();
    disp( seconds(end_time - start_time));
    endfunction

        用法如图所示

        

        每日一道理
    我拽着春姑娘的衣裙,春姑娘把我带到了绿色的世界里。

        

    随机线性梯度源码

    ##stochastic_gradient.m
    
    ### -*- texinfo -*-
    ## @deftypefn {Function File} {} [ theta ] = stochastic_gradient ( x, y)
    ## Return the parameter of linear founction where y = theta[2:n+1]*x + theta(1).
    ##	where n is the row of matrix x.
    ## It use stochastic gradient algorithm obviously.
    ## For example:
    ##
    ## @example
    ## @group
    ## x=[1 4;2 5;5 1; 4 2] y = [ 19 26 19 20]
    ## batch_gradient (x, y)
    ##   @result{} [0.0060406   2.9990063   3.9990063]
    ## @end group
    ## @end example
    ## @seealso{batch_gradient}
    ## @end deftypefn
    ## Author: xiuleili <xiuleili@XIULEILI>
    ## Created: 2013-04-26
    
    function [ theta ] = stochastic_gradient (x,y)
    [n,m] = size(x);
    [my,ny] = size(y);
    if ny!=n | my != 1
    	error("Error: x should be a matrix with(n,m) and y must be (1,n), where n is the count of training samples.");
    end
    
    X = [ones(n,1) x]';
    theta = rand(1, m+1);
    learning_rate = 0.01;
    errors = 1;
    threshold=0.000001;
    times = 0;
    start_time = clock ();
    while errors > threshold
    	for k=[1:n]
    		xx = X(:,k);
    		theta += learning_rate * (y(k)-theta*xx)*xx';
    	end
    	errors = sum((y-theta*X).^2);
    	times ++;
    	printf("[%d] errors = %f", times, errors);
    	disp(theta);
    	if(times > 10000000000)
    		break;
    	end
    end
    end_time = clock ();
    disp( seconds(end_time - start_time));
    endfunction

        

    备注

        seconds是一自定义函数:

    ## seconds
    
    ## Author: xiuleili <xiuleili@XIULEILI>
    ## Created: 2013-04-26
    
    function [ ret ] = seconds (t)
    t=round(t);
    ret = t(6) + t(5)*60 + t(4)*3600+t(3)*3600*24;
    endfunction

        

    考参:

        [1]易网公开课, 机器学习 http://v.163.com/special/opencourse/machinelearning.html

        [2]C++实现 http://blog.sina.com.cn/s/blog_69821363010156rs.html

        

    文章结束给大家分享下程序员的一些笑话语录: Bphone之你们聊,我先走了!移动说:我在phone前加o,我叫o缝;苹果说:我在phone前i,我是i缝;微软说:我在phone前加w,我叫w缝;三星说:你们聊,我先走了!
    将来王建宙写回忆录的时候,一定要有一句“常小兵为中国移动的发展做出了不可磨灭的贡献”。

  • 相关阅读:
    强制隐藏android键盘
    百度地图3.7.1和传感器的应用
    百度地图3.7.1获取当前的位置,并自定义自身位置的图标
    百度地图3.7.1的卫星地图,实时交通的改变
    百度地图3.7.1的配置
    RecyclerView的ListView显示效果
    单元测试
    自定义侧滑菜单
    synchronized关键字的用法
    Android 开发中R文件的丢失
  • 原文地址:https://www.cnblogs.com/xinyuyuanm/p/3045654.html
Copyright © 2020-2023  润新知