• 九度 1537:买卖股票(区间DP)


    总结

    1. 更新动规矩阵时, 不要 push 更新, 要用 pull更新. push 更新容易让逻辑出问题, 自己卡了很久, 改用 pull 就变得很顺利了

    2. acm 题, 空间至多是百万, 再网上就会超的

    3. 曾做过一道题, 和这个类似. 好像是背包问题的一个变形把, 核心都是降维. 降维的过程又是一道动规题目

    题目描述:

    给定一个大小为n的数组,数组的元素a[i]代表第i天的股票价格
    设计一个算法,计算在最多允许买卖k次(一买一卖记为一次)的条件下的最大收益
    需要注意的是,你不能同时拥有两份股票。也就是说在下次买入前,你必须把手头上原有的股票先卖掉

    思路

    1. 假设 dp[i][j] 表示前 i 天, 最多允许买卖 j 次的最大收益, 那么 dp[i][j] = max{(dp[m][j-1] + price[i]-price[m+1]),price[i]-price[0]}  (0<=m<i) 需要遍历 i, j, m 时间复杂度为o (n*n*k), 提交代码超时

    2. 若是把 dp[i][j] 拆开来写, 那么

    dp[i][j] = max {

    0 - price[0] + price[i],

    dp[0][j-1] - price[1] + price[i],

    dp[1][j-1] - price[2] + price[i],

    ...

    dp[i-1][j-1] - price[i] + price[i]

    }

    在求解 dp[i][j] 之前, dp[i-1][j-1] 已经被求出, 所以可以存储 max(dp[m][j-1]-price[m+1]), 在 dp[i][j] 需求时直接调用, 这样的话, 时间复杂度下降一维, o(n*k)

    总体的思路就是上面了

    3. 假设 dp2[n-1][k-1] 为所求的最终结果, 假设

    dp1[i][j] = max {

    0 - price[0], 

    dp2[0][j-1] - price[1], 

    dp2[1][j-1] - price[2],

    ...

    dp2[i-1][j-1] - price[i],

    }

    那么 dp2[i][j] = dp1[i][j] + price[i]   ---------------- a

    max(dp1[i][j], dp2[i][j-1]-price[i+1])  ==> dp1[i+1][j]

    所以 dp1[i][j] = max(dp1[i-1][j], dp2[i-1][j-1]-price[i]) --------------------b

    a, b 是题目的状态转移方程, 剩下的也是最难的就是初始化了

    4. 首先看 dp1 的, dp1[i][j] = max(dp1[i-1][j], dp2[i-1][j-1]-price[i]). 想象一个二维矩阵, dp1[i][j] 是由其上面和左上两个格子组合, 那么 dp1[i][j] 的第一行就无法通过递推的来, 只能初始化, 手动生成. 同样的道理, dp1 第一列也无法递推而得. 不过好在 dp2[0][i] 都等于 0, dp2[i][0] 相当于 [0~i] 的最大利润, 可以递推求出.

    那么, 我们看第二行需要些什么.

    dp1[1][1] = max(0-price[0], dp2[0][0]-price[1]) = max(dp1[0][1], dp2[0][0]-price[1])

    dp1[1][2] = max(0-price[0], dp2[0][1]-price[1]) = max(dp1[0][2], dp2[0][1]-price[1])

    ...

    dp1[1][i] = max(0-price[0],  dp2[0][i-1] -price[1])= max(dp1[0][i-1], dp2[0][i]-price[1])

    所以, dp1[0][i] = 0-price[0] 即可, dp1[i][0] 不需要初始化, 因为 dp2[i][0] 可以直接求出

    代码

    未能通过九度测试, 第 4 个案例无法通过

    #include <iostream>
    #include <stdio.h>
    using namespace std;
    
    int dp1[1001][1001];
    int dp2[1001][1001];
    int prices[1001];
    
    void init(int n, int k) {
        for(int i = 0; i < k; i ++) {// init first line
            dp1[0][i] = -prices[0];
            dp2[0][i] = 0;
        }
        
        int global = 0, local = 0;
        for(int i = 1; i < n; i ++) {// init first column
            local = max(0, prices[i]-prices[i-1]+local);
            global = max(global, local);
            dp2[i][0] = global;
        }
    }
    
    int dodp(int n, int k) {
        for(int i = 1; i < n; i ++) {
            for(int j = 1; j < k; j ++) {
                dp1[i][j] = max(dp1[i-1][j], dp2[i-1][j-1]-prices[i]);
                dp2[i][j] = dp1[i][j] + prices[i];
            }
        }
        return dp2[n-1][k-1];
    }
    
    int main() {
        freopen("testcase.txt", "r", stdin);
        int n,k;
        while(scanf("%d%d", &n, &k) != EOF) {
            for(int i = 0; i < n; i ++)
                scanf("%d", prices+i);
    
            init(n, k);
            int res = dodp(n, k);
            cout << res << endl;
        }
        return 0;
    }
  • 相关阅读:
    ASP.NET中几种加密方法
    Linux Mint17.1安装PHPStorm8.0.2
    HTTP 错误 500.23
    Kali Linux 下安装配置MongoDB数据库 ubuntu 下安装配置MongoDB源码安装数据库
    如何在Ubuntu 18.04 LTS上安装和配置MongoDB
    scrapy 如何链接有密码的redis scrapy-redis 设置redis 密码 scrapy-redis如何为redis配置密码
    Redis报错:DENIED Redis is running in protected mode
    ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/run/mysqld/mysqld.sock' (2 "No such file or directory")
    用mingw32编译ffmpeg2.7
    VS2005编译QT4.8.2
  • 原文地址:https://www.cnblogs.com/xinsheng/p/3579601.html
Copyright © 2020-2023  润新知