题目:
Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1]
.
For example,
Given [5, 7, 7, 8, 8, 10]
and target value 8,
return [3, 4]
.
思路:
1. 又是二分法
2. 二分法的框架, 需要考虑的位置有 3 个, 在代码中我标了出来, 分别为 q1, q2, q3
3. q1 是取 <= 还是取 <. 我的经验是, 若是题目要求找到 target, 那么就用 <=, 否则用 <. 我记得在二分搜索题时, 都是用 < 的
4. q2 比较容易, 考虑当 low == high 时, 我们希望游标往哪里走
5. q3, 返回 low/high. q3 的选取与 q2 有关. 还是需要考虑当 low == high 时, 游标会往哪走
代码
class Solution { public: vector<int> searchRange(int A[], int n, int target) { vector<int> res; if(n <= 0) return res; int leftIndex = lSearch(A, n, target); int rightIndex = rSearch(A, n, target); res.push_back(leftIndex); res.push_back(rightIndex); return res; } int lSearch(int A[], int n, int target) { int low = 0, high = n-1; while(low <= high) { // q1 int mid = (low+high)>>1; if(A[mid] < target) { // q2 low = mid+1; }else{ high = mid-1; } } if(A[low] != target) return -1; return low; // q3 } int rSearch(int A[], int n, int target) { int low = 0, high = n-1; while(low <= high) { // q1 int mid = (low+high)>>1; if(A[mid] > target) { // q2 high = mid-1; }else{ low = mid +1; } } if(A[high] != target) return -1; return high; // q3 } };