一.系统吞度量要素:
一个系统的吞度量(承压能力)与request对CPU的消耗、外部接口、IO等等紧密关联。单个reqeust 对CPU消耗越高,外部系统接口、IO影响速度越慢,系统吞吐能力越低,反之越高。
系统吞吐量几个重要参数:QPS(TPS)、并发数、响应时间
QPS(TPS):每秒钟request/事务 数量
并发数: 系统同时处理的request/事务数
响应时间: 一般取平均响应时间
(很多人经常会把并发数和TPS理解混淆)
理解了上面三个要素的意义之后,就能推算出它们之间的关系:
QPS(TPS)= 并发数/平均响应时间 或者 并发数 = QPS*平均响应时间
一个典型的上班签到系统,早上8点上班,7点半到8点的30分钟的时间里用户会登录签到系统进行签到。公司员工为1000人,平均每个员上登录签到系统的时长为5分钟。可以用下面的方法计算。
QPS = 1000/(30*60) 事务/秒
平均响应时间为 = 5*60 秒
并发数= QPS*平均响应时间 = 1000/(30*60) *(5*60)=166.7
一个系统吞吐量通常由QPS(TPS)、并发数两个因素决定,每套系统这两个值都有一个相对极限值,在应用场景访问压力下,只要某一项达到系统最高值,系统的吞吐量就上不去了,如果压力继续增大,系统的吞吐量反而会下降,原因是系统超负荷工作,上下文切换、内存等等其它消耗导致系统性能下降。
决定系统响应时间要素
我们做项目要排计划,可以多人同时并发做多项任务,也可以一个人或者多个人串行工作,始终会有一条关键路径,这条路径就是项目的工期。
系统一次调用的响应时间跟项目计划一样,也有一条关键路径,这个关键路径是就是系统影响时间;
关键路径是有CPU运算、IO、外部系统响应等等组成。
二.系统吞吐量评估:
我们在做系统设计的时候就需要考虑CPU运算、IO、外部系统响应因素造成的影响以及对系统性能的初步预估。
而通常境况下,我们面对需求,我们评估出来的出来QPS、并发数之外,还有另外一个维度:日PV。
通过观察系统的访问日志发现,在用户量很大的情况下,各个时间周期内的同一时间段的访问流量几乎一样。比如工作日的每天早上。只要能拿到日流量图和QPS我们就可以推算日流量。
通常的技术方法:
1. 找出系统的最高TPS和日PV,这两个要素有相对比较稳定的关系(除了放假、季节性因素影响之外)
2. 通过压力测试或者经验预估,得出最高TPS,然后跟进1的关系,计算出系统最高的日吞吐量。B2B中文和淘宝面对的客户群不一样,这两个客户群的网络行为不应用,他们之间的TPS和PV关系比例也不一样。
A)淘宝
淘宝流量图:
淘宝的TPS和PV之间的关系通常为 最高TPS:PV大约为 1 : 11*3600 (相当于按最高TPS访问11个小时,这个是商品详情的场景,不同的应用场景会有一些不同)
B) B2B中文站
B2B的TPS和PV之间的关系不同的系统不同的应用场景比例变化比较大,粗略估计在1 : 8个小时左右的关系(09年对offerdetail的流量分析数据)。旺铺和offerdetail这两个比例相差很大,可能是因为爬虫暂的比例较高的原因导致。
在淘宝环境下,假设我们压力测试出的TPS为100,那么这个系统的日吞吐量=100*11*3600=396万
这个是在简单(单一url)的情况下,有些页面,一个页面有多个request,系统的实际吞吐量还要小。
无论有无思考时间(T_think),测试所得的TPS值和并发虚拟用户数(U_concurrent)、Loadrunner读取的交易响应时间(T_response)之间有以下关系(稳定运行情况下):
TPS=U_concurrent / (T_response+T_think)。
并发数、QPS、平均响应时间三者之间关系
上图横坐标是并发用户数。绿线是CPU使用率;紫线是吞吐量,即QPS;蓝线是时延。
开始,系统只有一个用户,CPU工作肯定是不饱合的。一方面该服务器可能有多个cpu,但是只处理单个进程,另一方面,在处理一个进程中,有些阶段可能是IO阶段,这个时候会造成CPU等待,但是有没有其他请 求进程可以被处理)。随着并发用户数的增加,CPU利用率上升,QPS相应也增加(公式为QPS=并发用户数/平均响应时间。)随着并发用户数的增加,平均响应时间也在增加,而且平均响应时间的增加是一个指数增加曲线。而当并发数增加到很大时,每秒钟都会有很多请求需要处理,会造成进程(线程)频繁切换,反正真正用于处理请求的时间变少,每秒能够处理的请求数反而变少,同时用户的请求等待时间也会变大,甚至超过用户的心理底线。