• 建立一个隐藏层的神经网络模型


    1、本次搭建的神经网络模型具有一个隐藏层的二分类

    2、需要的激活函数有tanh,sigmoid

    3、用了正向传播和反向传播。

    4、计算交叉熵损失。

    模型如下:

    用到的数学公式:

    建立神经网络的一般方法是:

    1、定义神经网络结构(比如输入单元、隐藏单元等等)

    2、初始化模型的参数

    3、循环(迭代次数):

      ⑴实现向前传播

      ⑵计算损失

      ⑶实现向后传播以获得渐变

      ⑷更新参数(梯度下降)

    1、定义神经网络结构

    本次设置隐藏层大小为4

    n_x:输入层的大小。

    n_h:隐藏层的大小(将其设置为4)

    n_y:输出层的大小。

     1 def layer_sizes(X, Y):
     2     """
     3     Arguments:
     4     X -- input dataset of shape (input size, number of examples)
     5     Y -- labels of shape (output size, number of examples)
     6     
     7     Returns:
     8     n_x -- the size of the input layer
     9     n_h -- the size of the hidden layer
    10     n_y -- the size of the output layer
    11     """
    12     ### START CODE HERE ### (≈ 3 lines of code)
    13     n_x = X.shape[0] # size of input layer
    14     n_h = 4
    15     n_y = Y.shape[0] # size of output layer
    16     ### END CODE HERE ###
    17     return (n_x, n_h, n_y)
    layer_sizes

    2、初始化模型的参数

    使用随机值初始化权重矩阵、将偏差向量初始化为零。

     1 def initialize_parameters(n_x, n_h, n_y):
     2     """
     3     Argument:
     4     n_x -- size of the input layer
     5     n_h -- size of the hidden layer
     6     n_y -- size of the output layer
     7     
     8     Returns:
     9     params -- python dictionary containing your parameters:
    10                     W1 -- weight matrix of shape (n_h, n_x)
    11                     b1 -- bias vector of shape (n_h, 1)
    12                     W2 -- weight matrix of shape (n_y, n_h)
    13                     b2 -- bias vector of shape (n_y, 1)
    14     """
    15     
    16     np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.
    17     
    18     ### START CODE HERE ### (≈ 4 lines of code)
    19     W1 = np.random.randn(n_h, n_x) * 0.01
    20     b1 = np.zeros((n_h, 1)) 
    21     W2 = np.random.randn(n_y, n_h) * 0.01
    22     b2 = np.zeros((n_y, 1))
    23     ### END CODE HERE ###
    24     
    25     assert (W1.shape == (n_h, n_x))
    26     assert (b1.shape == (n_h, 1))
    27     assert (W2.shape == (n_y, n_h))
    28     assert (b2.shape == (n_y, 1))
    29     
    30     parameters = {"W1": W1,
    31                   "b1": b1,
    32                   "W2": W2,
    33                   "b2": b2}
    34     
    35     return parameters
    initialize_parameters

    3、循环

    ⑴向前传播:

    向前传播需要计算Z1、A1、Z2、A2,将计算得到的值存储在缓存里,方便反向传播的计算

    激活函数用tanh和sigmoid。

     1 def forward_propagation(X, parameters):
     2     """
     3     Argument:
     4     X -- input data of size (n_x, m)
     5     parameters -- python dictionary containing your parameters (output of initialization function)
     6     
     7     Returns:
     8     A2 -- The sigmoid output of the second activation
     9     cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
    10     """
    11     # Retrieve each parameter from the dictionary "parameters"
    12     ### START CODE HERE ### (≈ 4 lines of code)
    13     W1 = parameters['W1']
    14     b1 = parameters['b1']
    15     W2 = parameters['W2']
    16     b2 = parameters['b2']
    17     ### END CODE HERE ###
    18     
    19     # Implement Forward Propagation to calculate A2 (probabilities)
    20     ### START CODE HERE ### (≈ 4 lines of code)
    21     Z1 = np.dot(W1,X)+b1
    22     #A1 = sigmoid(Z1)
    23     A1 = np.tanh(Z1)
    24     Z2 = np.dot(W2,A1)+b2
    25     #A2 = sigmoid(Z2)
    26     A2 = sigmoid(Z2)
    27     ### END CODE HERE ###
    28     
    29     assert(A2.shape == (1, X.shape[1]))
    30     
    31     cache = {"Z1": Z1,
    32              "A1": A1,
    33              "Z2": Z2,
    34              "A2": A2}
    35     
    36     return A2, cache
    forward_propagation

    ⑵计算代价成本 J 

    J的计算如下:

     1 def compute_cost(A2, Y, parameters):
     2     """
     3     Computes the cross-entropy cost given in equation (13)
     4     
     5     Arguments:
     6     A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
     7     Y -- "true" labels vector of shape (1, number of examples)
     8     parameters -- python dictionary containing your parameters W1, b1, W2 and b2
     9     
    10     Returns:
    11     cost -- cross-entropy cost given equation (13)
    12     """
    13     
    14     m = Y.shape[1] # number of example
    15 
    16     # Compute the cross-entropy cost
    17     ### START CODE HERE ### (≈ 2 lines of code)
    18     logprobs = np.multiply(np.log(A2),Y)+np.multiply((1-Y),np.log(1-A2))
    19     cost = -1/m*np.sum(logprobs)
    20     ### END CODE HERE ###
    21     
    22     cost = np.squeeze(cost)     # makes sure cost is the dimension we expect. 
    23                                 # E.g., turns [[17]] into 17 
    24     assert(isinstance(cost, float))
    25     
    26     return cost
    compute_cost

    ⑶反向传播

    用到的公式:

    计算dZ1时需要用到g[1]'(Z[1]),由于激活函数是tanh,g(z)' = 1 − (g(z))2  ,即  g[1]'(Z[1]) = 1 - (g[1](Z[1]))2  。

    当然,如果激活函数是sigmoid时,就是g(z)' = g(z)(1 − g(z))。

     1 def backward_propagation(parameters, cache, X, Y):
     2     """
     3     Implement the backward propagation using the instructions above.
     4     
     5     Arguments:
     6     parameters -- python dictionary containing our parameters 
     7     cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
     8     X -- input data of shape (2, number of examples)
     9     Y -- "true" labels vector of shape (1, number of examples)
    10     
    11     Returns:
    12     grads -- python dictionary containing your gradients with respect to different parameters
    13     """
    14     m = X.shape[1]
    15     
    16     # First, retrieve W1 and W2 from the dictionary "parameters".
    17     ### START CODE HERE ### (≈ 2 lines of code)
    18     W1 = parameters['W1']
    19     W2 = parameters['W2']
    20     ### END CODE HERE ###
    21         
    22     # Retrieve also A1 and A2 from dictionary "cache".
    23     ### START CODE HERE ### (≈ 2 lines of code)
    24     A1 = cache['A1']
    25     A2 = cache['A2']
    26     ### END CODE HERE ###
    27     
    28     # Backward propagation: calculate dW1, db1, dW2, db2. 
    29     ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)
    30     dZ2 = A2-Y
    31     dW2 = 1/m*np.dot(dZ2,A1.T)
    32     db2 = 1/m*np.sum(dZ2,axis=1,keepdims=True)
    33     dZ1 = np.dot(W2.T,dZ2)*(1 - np.power(A1, 2))
    34     dW1 = 1/m*np.dot(dZ1,X.T)
    35     db1 = 1/m*np.sum(dZ1,axis=1,keepdims=True)
    36     ### END CODE HERE ###
    37     
    38     grads = {"dW1": dW1,
    39              "db1": db1,
    40              "dW2": dW2,
    41              "db2": db2}
    42     
    43     return grads
    backward_propagation

    ⑷更新参数

    通过更新参数。

     1 def update_parameters(parameters, grads, learning_rate = 1.2):
     2     """
     3     Updates parameters using the gradient descent update rule given above
     4     
     5     Arguments:
     6     parameters -- python dictionary containing your parameters 
     7     grads -- python dictionary containing your gradients 
     8     
     9     Returns:
    10     parameters -- python dictionary containing your updated parameters 
    11     """
    12     # Retrieve each parameter from the dictionary "parameters"
    13     ### START CODE HERE ### (≈ 4 lines of code)
    14     W1 = parameters['W1']
    15     b1 = parameters['b1']
    16     W2 = parameters['W2']
    17     b2 = parameters['b2']
    18     ### END CODE HERE ###
    19     
    20     # Retrieve each gradient from the dictionary "grads"
    21     ### START CODE HERE ### (≈ 4 lines of code)
    22     dW1 = grads['dW1']
    23     db1 = grads['db1']
    24     dW2 = grads['dW2']
    25     db2 = grads['db2']
    26     ## END CODE HERE ###
    27     
    28     # Update rule for each parameter
    29     ### START CODE HERE ### (≈ 4 lines of code)
    30     W1 -= learning_rate*dW1
    31     b1 -= learning_rate*db1
    32     W2 -= learning_rate*dW2
    33     b2 -= learning_rate*db2
    34     ### END CODE HERE ###
    35     
    36     parameters = {"W1": W1,
    37                   "b1": b1,
    38                   "W2": W2,
    39                   "b2": b2}
    40     
    41     return parameters
    update_parameters

    4、将之前的合并到一个函数里

     1 def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
     2     """
     3     Arguments:
     4     X -- dataset of shape (2, number of examples)
     5     Y -- labels of shape (1, number of examples)
     6     n_h -- size of the hidden layer
     7     num_iterations -- Number of iterations in gradient descent loop
     8     print_cost -- if True, print the cost every 1000 iterations
     9     
    10     Returns:
    11     parameters -- parameters learnt by the model. They can then be used to predict.
    12     """
    13     
    14     np.random.seed(3)
    15     n_x = layer_sizes(X, Y)[0]
    16     n_y = layer_sizes(X, Y)[2]
    17     
    18     # Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".
    19     ### START CODE HERE ### (≈ 5 lines of code)
    20     parameters = initialize_parameters(n_x, n_h, n_y)
    21     W1 = parameters['W1']
    22     b1 = parameters['b1']
    23     W2 = parameters['W2']
    24     b2 = parameters['b2']
    25     ### END CODE HERE ###
    26     
    27     # Loop (gradient descent)
    28 
    29     for i in range(0, num_iterations):
    30          
    31         ### START CODE HERE ### (≈ 4 lines of code)
    32         # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
    33         A2, cache = forward_propagation(X, parameters)
    34         
    35         # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
    36         cost = compute_cost(A2, Y, parameters)
    37  
    38         # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
    39         grads = backward_propagation(parameters, cache, X, Y)
    40  
    41         # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
    42         parameters = update_parameters(parameters, grads)
    43         
    44         ### END CODE HERE ###
    45         
    46         # Print the cost every 1000 iterations
    47         if print_cost and i % 1000 == 0:
    48             print ("Cost after iteration %i: %f" %(i, cost))
    49 
    50     return parameters
    nn_model

     

    5、预测

    可以写一个预测函数,用来验证得到的神经网络模型的效果怎么样。

    预测使用下面规则:

     1 def predict(parameters, X):
     2     """
     3     Using the learned parameters, predicts a class for each example in X
     4     
     5     Arguments:
     6     parameters -- python dictionary containing your parameters 
     7     X -- input data of size (n_x, m)
     8     
     9     Returns
    10     predictions -- vector of predictions of our model (red: 0 / blue: 1)
    11     """
    12     
    13     # Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.
    14     ### START CODE HERE ### (≈ 2 lines of code)
    15     A2, cache = forward_propagation(X, parameters)
    16     predictions = (A2 > 0.5)
    17     ### END CODE HERE ###
    18     
    19     return predictions
    predict

    6、其它

    由于nn_model模型已经封装好了,现在只需要传入参数就可以得到结果了。然后我们可以调参,设置不同的隐藏层大小来得到不同的效果,依次选择最佳的值。

    plt.figure(figsize=(16, 32))
    hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50]
    for i, n_h in enumerate(hidden_layer_sizes):
        plt.subplot(5, 2, i+1)
        plt.title('Hidden Layer of size %d' % n_h)
        parameters = nn_model(X, Y, n_h, num_iterations = 5000)
        plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
        predictions = predict(parameters, X)
        accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100)
        print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy))
    

      

    得到的准确率如下:

    Accuracy for 1 hidden units: 67.5 %
    Accuracy for 2 hidden units: 67.25 %
    Accuracy for 3 hidden units: 90.75 %
    Accuracy for 4 hidden units: 90.5 %
    Accuracy for 5 hidden units: 91.25 %
    Accuracy for 20 hidden units: 90.0 %
    Accuracy for 50 hidden units: 90.25 %

    可以看到隐藏层大小为5时效果最佳,可见不是越大越好,也不是越小越好。根据不同的问题需要选择不同的值。

  • 相关阅读:
    使用自绘控件详细步骤转
    对话框上如何创建视图
    c++ 分割字符串存入数组
    在对话框上创建视图的报错》ASSERT(pParentFrame == pDesktopWnd || pDesktopWnd>IsChild(pParentFrame))
    CMFCOutlookBarTabCtrl 不显示了
    常用加密算法概述
    [两个月,黎巴嫩]贝鲁特守望
    [C#]XmlDocument_修改xml文件操作.
    wordpress之客户端发布文章
    大二上躺平经验
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/8658218.html
Copyright © 2020-2023  润新知