• POJ 2387 Til the Cows Come Home


    Description

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

    Input

    * Line 1: Two integers: T and N

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

    Output

    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

    Sample Input

    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100

    Sample Output

    90

    Hint

    INPUT DETAILS:

    There are five landmarks.

    OUTPUT DETAILS:

    Bessie can get home by following trails 4, 3, 2, and 1.
     
    最短路问题。
    dijkstra算法:
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <algorithm>
     4 #define INF 0x3f3f3f3f
     5 using namespace std;
     6 const int N = 1010;
     7 int G[N][N], vis[N], d[N];
     8 int t, n;
     9 void dijkstra() {
    10     for(int i = 1; i <= n; i ++) d[i] = INF, vis[i] = 0;
    11     d[1] = 0;
    12     while(true) {
    13         int v = -1;
    14         for(int i = 1; i <= n; i ++) {
    15             if(!vis[i] && (v == -1 || d[v] > d[i])) v = i;
    16         }
    17         if(v == -1) break;
    18         vis[v] = 1;
    19         for(int i = 1; i <= n; i ++)
    20         d[i] = min(d[i],d[v]+G[i][v]);
    21     }
    22 }
    23 int main() {
    24     while(scanf("%d%d",&t,&n) != EOF) {
    25         for(int i = 1; i <= n; i ++) {
    26             for(int j = 1; j <= n; j ++)
    27             G[i][j] = (i==j ? 0: INF);
    28         }
    29         for(int i = 1; i <= t; i ++) {
    30             int u, v, w;
    31             scanf("%d %d %d", &u, &v, &w);
    32             if(G[u][v] > w) {
    33                 G[u][v] = G[v][u] = w;
    34             }
    35         }
    36         dijkstra();
    37         printf("%d
    ",d[n]);
    38     }
    39     return 0;
    40 }

    优化的dijksta算法:

     1 #include <iostream>
     2 #include <queue>
     3 #include <string.h>
     4 #include <stdio.h>
     5 #include <vector>
     6 #include <queue>
     7 #define INF 0x3f3f3f3f
     8 using namespace std;
     9 const int N = 2010;
    10 struct edge {
    11     int to, cost;
    12 };
    13 vector<edge> G[N];
    14 int d[N], t, n;
    15 typedef pair<int,int> P;
    16 void dijkstra() {
    17     priority_queue<P, vector<P>, greater<P> > que;
    18     for(int i = 1; i <= n; i ++) d[i] = INF;
    19     d[1] = 0;
    20     que.push(P(0,1));
    21     while(!que.empty()) {
    22         P p = que.top(); que.pop();
    23         int v = p.second;
    24         if(d[v] < p.first) continue;
    25         for(int i = 0; i < G[v].size(); i ++) {
    26             edge e = G[v][i];
    27             if(d[e.to] > d[v] + e.cost) {
    28                 d[e.to] = d[v] + e.cost;
    29                 que.push(P(d[e.to], e.to));
    30             }
    31         }
    32     }
    33 }
    34 int main() {
    35     while(scanf("%d%d",&t,&n)!=EOF) {
    36         for(int i = 1; i <= t; i ++) {
    37             int u, v, w;
    38             scanf("%d %d %d",&u, &v, &w);
    39             G[u].push_back((edge){v,w});
    40             G[v].push_back((edge){u,w});
    41         }
    42         dijkstra();
    43         printf("%d
    ",d[n]);
    44     }
    45     return 0;
    46 }
  • 相关阅读:
    Flask--配置文件
    Flask--路由系统
    Flask--视图
    Flask--蓝图
    Flask--静态资源
    Flask--登录验证(多个装饰器)
    Flask--session
    CSS中的定位机制
    四、DDL常见操作汇总
    三、管理员必备技能
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/7276826.html
Copyright © 2020-2023  润新知