• 手把手教你cuda5.5与VS2010的编译环境搭建


    目前版本的cuda是很方便的,它的一个安装里面包括了Toolkit`SDK`document`Nsight等等,而不用你自己去挨个安装,这样也避免了版本的不同步问题。

    1 cuda5.5的下载地址,官方网站即可:

         https://developer.nvidia.com/cuda-downloads   在里面选择你所对应的电脑版本即可。

    2 VS2010这个没什么说的了,网上各种的免费资源,下载一个不需要钱的就行。

    3 Cuda的安装:(win7版32bit)


     安装cuda

      3.1 cuda的安装文件

      

      直接双击exe文件,弹出后,首先会监测一下你的运行环境,如果找不到Nividia对应的显卡设备,他会提示你是否要继续安装。这里面nvidia的显卡,最起码也是8800以上的,要不是无法编写CUDA的。千万不要电脑上面是intel或者AMD的显卡,却要编写cuda,除非你有钱买一个cuda-x86这个编译器。

      3.2 弹出的对话框直接OK就行,这个是CUDA的一些安装文件,无所谓的:

     

      3.3 他会监测你的电脑是否支持cuda的搭建,等待就行

      3.4 系统检查

      3.5 选择同意并继续

      3.6 推荐先选择自定义安装

      3.7 最主要的是cuda documentcuda Toolkit cuda samples(SDK),Nsight图形驱动程序,3D如果需要的话安装,不安装也无所谓。这里主要就是能看见都有什么,免得漏掉了,博主当初就因为选了精简安装,没安装上SDK。

      

      3.7 安装的位置,推荐自己建三个好找的文件夹,不用他默认的路径,免得稍后配置环境变量麻烦。

    博主的安装路径为:

      3.8 下一步安装就行了。

    至此,cuda的安装就搞定了。


     

    4 接下来配置cuda的环境变量,默认安装好后,他会自动帮你设置好2个环境变量,但是最好还自己添加下其他的几个,方便日后配置vs使用

     

    上面的两个环境变量是cuda默认配置的,接下来添加

    CUDA_BIN_PATH  %CUDA_PATH%in
    
    CUDA_LIB_PATH  %CUDA_PATH%libWin32
    
    CUDA_SDK_BIN  %CUDA_SDK_PATH%inWin32
    
    CUDA_SDK_LIB  %CUDA_SDK_PATH%commonlibWin32
    
    CUDA_SDK_PATH  C:cudacudasdkcommon

     

    添加完就行了

     


     

    5 接下来是cuda的安装成功与否的监测了,这个步骤我们用到两个东西,这两个东西,都是cuda为我们准备好的。

    deviceQuery.exe 和 bandwithTest.exe

      首先启动cmd DOS命令窗口(博主的cuda安装到c:cuda文件夹下)

      默认进来的是c:usersAdmistrator>路径,输入 cd .. 两次,来到c:目录下

      输入dir 找到安装的cuda文件夹

    进入Release文件夹后,直接执行bandwithTest.exe

    再执行deviceQuery.exe

    得到以上信息,因为我的显卡比较古老9300属于第一代的cuda显卡了。Rsult=PASS及说明,都通过了。如果Rsult=Fail 那不好意思,重新安装吧(或者是您的显卡真心不给力)。


     关于VS项目测试(推荐)

    打开VS,新建项目

    利用安装好的cuda向导,直接建立工程,里面会自动有一段kernel累加的代码

    #include "cuda_runtime.h"
    #include "device_launch_parameters.h"
    
    #include <stdio.h>
    
    cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size);
    
    __global__ void addKernel(int *c, const int *a, const int *b)
    {
        int i = threadIdx.x;
        c[i] = a[i] + b[i];
    }
    
    int main()
    {
        const int arraySize = 5;
        const int a[arraySize] = { 1, 2, 3, 4, 5 };
        const int b[arraySize] = { 10, 20, 30, 40, 50 };
        int c[arraySize] = { 0 };
    
        // Add vectors in parallel.
        cudaError_t cudaStatus = addWithCuda(c, a, b, arraySize);
        if (cudaStatus != cudaSuccess) {
            fprintf(stderr, "addWithCuda failed!");
            return 1;
        }
    
        printf("{1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}
    ",
            c[0], c[1], c[2], c[3], c[4]);
    
        // cudaDeviceReset must be called before exiting in order for profiling and
        // tracing tools such as Nsight and Visual Profiler to show complete traces.
        cudaStatus = cudaDeviceReset();
        if (cudaStatus != cudaSuccess) {
            fprintf(stderr, "cudaDeviceReset failed!");
            return 1;
        }
        getchar();
        return 0;
    }
    
    // Helper function for using CUDA to add vectors in parallel.
    cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size)
    {
        int *dev_a = 0;
        int *dev_b = 0;
        int *dev_c = 0;
        cudaError_t cudaStatus;
    
        // Choose which GPU to run on, change this on a multi-GPU system.
        cudaStatus = cudaSetDevice(0);
        if (cudaStatus != cudaSuccess) {
            fprintf(stderr, "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?");
            goto Error;
        }
    
        // Allocate GPU buffers for three vectors (two input, one output)    .
        cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
        if (cudaStatus != cudaSuccess) {
            fprintf(stderr, "cudaMalloc failed!");
            goto Error;
        }
    
        cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
        if (cudaStatus != cudaSuccess) {
            fprintf(stderr, "cudaMalloc failed!");
            goto Error;
        }
    
        cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
        if (cudaStatus != cudaSuccess) {
            fprintf(stderr, "cudaMalloc failed!");
            goto Error;
        }
    
        // Copy input vectors from host memory to GPU buffers.
        cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
        if (cudaStatus != cudaSuccess) {
            fprintf(stderr, "cudaMemcpy failed!");
            goto Error;
        }
    
        cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
        if (cudaStatus != cudaSuccess) {
            fprintf(stderr, "cudaMemcpy failed!");
            goto Error;
        }
    
        // Launch a kernel on the GPU with one thread for each element.
        addKernel<<<1, size>>>(dev_c, dev_a, dev_b);
    
        // Check for any errors launching the kernel
        cudaStatus = cudaGetLastError();
        if (cudaStatus != cudaSuccess) {
            fprintf(stderr, "addKernel launch failed: %s
    ", cudaGetErrorString(cudaStatus));
            goto Error;
        }
        
        // cudaDeviceSynchronize waits for the kernel to finish, and returns
        // any errors encountered during the launch.
        cudaStatus = cudaDeviceSynchronize();
        if (cudaStatus != cudaSuccess) {
            fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!
    ", cudaStatus);
            goto Error;
        }
    
        // Copy output vector from GPU buffer to host memory.
        cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
        if (cudaStatus != cudaSuccess) {
            fprintf(stderr, "cudaMemcpy failed!");
            goto Error;
        }
    
    Error:
        cudaFree(dev_c);
        cudaFree(dev_a);
        cudaFree(dev_b);
        
        return cudaStatus;
    }
    View Code

    在main函数return之前加入getchar(),停止自动退出,以便观测效果

    进入后,点击运行按钮,可能发生LINK错误(如果没有错误,跳过此段

    这时进入-》项目-》属性-》通用配置-》输入和输出-》嵌入清单 ---- 修改成,原来可能为“

    再次编译,成功运行后,会显示下面的结果

    恭喜,cuda已经在您的机器上安装成功了。

    如果是新手,推荐这样新建工程后,在里面修改代码成为自己的工程,配置属性不会出错。

    如果想要自己手动配置也可以参考下面的例子。


    手动配置VS项目(不推荐)

    最后就是VS的配置了(这个是自己手动配置的,有时候容易出现问题,不是很推荐,建议用上面的方法建立项目进行测试

      5.1 启动VS2010

      5.2 新建一个win32的控制台工程,空的。

      5.3 右键源文件文件夹->新建项->选择cuda c/c++->新建一个以.cu结尾的文件

      5.4 右键工程-》生成自定义-》选择cuda生成

      5.5 右键test.cu-》属性-》选择cuda c/c++编译器

      5.6 右键工程-》属性-》链接器-》常规-》附加库目录-》添加目录 $(CUDA_PATH_V5_5)lib$(Platform);

      5.7 在链接器-》输入中添加 cudart.lib

     

      5.8 在工具-》选项-》文本编辑器-》文件扩展名-》添加cu cuh两个文件扩展名

     

    至此,编译环境的相关搭建就完成了。

     


     

     

    下面提供了一段test.cu的代码,供测试使用:

     

     1 #include <stdio.h>
     2 #include <stdlib.h>
     3 #include <cuda_runtime.h> 
     4 
     5 #define DATA_SIZE 1024
     6 #define checkCudaErrors(err)  __checkCudaErrors (err, __FILE__, __LINE__)
     7 #define getLastCudaError(msg)  __getLastCudaError (msg, __FILE__, __LINE__)
     8 
     9 int data[DATA_SIZE];
    10 
    11 ////////////////////////////////////////////////////////////////////////////////
    12 // These are CUDA Helper functions
    13 
    14 // This will output the proper CUDA error strings in the event that a CUDA host call returns an error
    15 
    16 
    17 inline void __checkCudaErrors(cudaError err, const char *file, const int line )
    18 {
    19     if(cudaSuccess != err)
    20     {
    21         fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.
    ",file, line, (int)err, cudaGetErrorString( err ) );
    22         return ;        
    23     }
    24 }
    25 
    26 // This will output the proper error string when calling cudaGetLastError
    27 
    28 
    29 inline void __getLastCudaError(const char *errorMessage, const char *file, const int line )
    30 {
    31     cudaError_t err = cudaGetLastError();
    32     if (cudaSuccess != err)
    33     {
    34         fprintf(stderr, "%s(%i) : getLastCudaError() CUDA error : %s : (%d) %s.
    ",
    35         file, line, errorMessage, (int)err, cudaGetErrorString( err ) );
    36         return ;
    37     }
    38 }
    39 
    40 // end of CUDA Helper Functions
    41 
    42 __global__ static void sumOfSquares(int *num, int * result){
    43     int sum=0;
    44     int i;
    45     for(i=0;i<DATA_SIZE;i++) {
    46         sum += num[i]*num[i];
    47         }
    48     *result = sum;
    49 }
    50 void GenerateNumbers(int *number, int size){
    51     for(int i = 0; i < size; i++) {
    52         number[i] = rand() % 10;
    53         printf("number[%d] is %d
    ",i,number[i]);
    54     }}
    55     
    56 int main(){
    57 
    58         cudaSetDevice(0);
    59         cudaDeviceSynchronize();
    60         cudaThreadSynchronize();
    61 
    62         GenerateNumbers(data, DATA_SIZE);
    63 
    64         int * gpudata, * result;
    65         int sum;
    66 
    67         checkCudaErrors( cudaMalloc((void**) &gpudata, sizeof(int)*DATA_SIZE));
    68         checkCudaErrors(cudaMalloc((void**) &result, sizeof(int)));
    69         checkCudaErrors(cudaMemcpy(gpudata, data, sizeof(int)*DATA_SIZE,cudaMemcpyHostToDevice));
    70 
    71         sumOfSquares<<<1, 1, 0>>>(gpudata, result);
    72 
    73         checkCudaErrors(cudaMemcpy(&sum, result, sizeof(int), cudaMemcpyDeviceToHost));
    74 
    75         cudaFree(gpudata);
    76         cudaFree(result);
    77 
    78         printf("-----------sum: %d
    ",sum);
    79 
    80         sum = 0;
    81         for(int i = 0; i < DATA_SIZE; i++) {
    82             sum += data[i] * data[i];
    83         }
    84         printf("sum (CPU): %d
    ", sum);
    85 
    86         getchar();
    87         return 0;
    88 }

     

     

     

     

  • 相关阅读:
    Return Largest Numbers in Arrays-freecodecamp算法题目
    Title Case a Sentence-freecodecamp算法题目
    Find the Longest Word in a String-freecodecamp算法题目
    Check for Palindromes-freecodecamp算法题目
    Factorialize a Number-freecodecamp算法题目
    Reverse a String-freecodecamp算法题目
    js拖动div
    Jquery $.ajax()方法详解
    jQuery中$.each()方法的使用
    echarts的pie图中,各区块颜色的调整
  • 原文地址:https://www.cnblogs.com/xing901022/p/3248469.html
Copyright © 2020-2023  润新知