• 深度学习Tensorflow生产环境部署(下·模型部署篇)


    前一篇讲过环境的部署篇,这一次就讲讲从代码角度如何导出pb模型,如何进行服务调用。

    1 hello world篇

    部署完docker后,如果是cpu环境,可以直接拉取tensorflow/serving,如果是GPU环境则麻烦点,具体参考前一篇,这里就不再赘述了。

    cpu版本的可以直接拉取tensorflow/serving,docker会自动拉取latest版本:

    docker pull tensorflow/serving
    

    如果想要指定tensorflow的版本,可以去这里查看:https://hub.docker.com/r/tensorflow/serving/tags/

    比如我需要的是1.12.0版本的tf,那么也可以拉取指定的版本:

    docker pull tensorflow/serving:1.12.0
    

    拉取完镜像,需要下载一个hello world的程序代码。

    mkdir -p /tmp/tfserving
    cd /tmp/tfserving
    git clone https://github.com/tensorflow/serving
    

    tensorflow/serving的github中有对应的测试模型,模型其实就是 y = 0.5 * x + 2。即输入一个数,输出是对应的y。

    运行下面的命令,在docker中部署服务:

    docker run -p 8501:8501 --mount type=bind,source=/tmp/serving/tensorflow_serving/servables/tensorflow/testdata/saved_model_half_plus_two_cpu,target=/models/half_plus_two -e MODEL_NAME=half_plus_two -t tensorflow/serving &
    

    上面的命令中,把/tmp/serving/tensorflow_serving/servables/tensorflow/testdata/saved_model_half_plus_two_cpu路径挂载到/models/half_plus_two,这样tensorflow_serving就可以加载models下的模型了,然后开放内部8501的http接口。

    执行docker ps查看服务列表:

    ➜  ~ docker ps
    CONTAINER ID        IMAGE                COMMAND                  CREATED             STATUS              PORTS                              NAMES
    7decb4286057        tensorflow/serving   "/usr/bin/tf_serving…"   7 seconds ago       Up 6 seconds        8500/tcp, 0.0.0.0:8501->8501/tcp   eager_dewdney
    

    发送一个http请求测试一下:

    curl -d '{"instances": [1.0, 2.0, 5.0]}' -X POST http://localhost:8501/v1/models/half_plus_two:predict
    {
        "predictions": [2.5, 3.0, 4.5
        ]
    }%   
    

    2 mnist篇

    由于前面的例子,serving工程下只有pb模型,没有模型的训练和导出,因此看不出其中的门道。这一部分就直接基于手写体识别的例子,展示一下如何从tensorflow训练代码导出模型,又如何通过grpc服务进行模型的调用。

    训练和导出:

    #! /usr/bin/env python
    """
    训练并导出Softmax回归模型,使用SaveModel导出训练模型并添加签名。
    """
    
    from __future__ import print_function
    
    import os
    import sys
    
    # This is a placeholder for a Google-internal import.
    
    import tensorflow as tf
    import ssl
    ssl._create_default_https_context = ssl._create_unverified_context
    
    import basic.mnist_input_data as mnist_input_data
    
    # 定义模型参数
    tf.app.flags.DEFINE_integer('training_iteration', 10, 'number of training iterations.')
    tf.app.flags.DEFINE_integer('model_version', 2, 'version number of the model.')
    tf.app.flags.DEFINE_string('work_dir', './tmp', 'Working directory.')
    FLAGS = tf.app.flags.FLAGS
    
    def main(_):
    
        # 参数校验
        # if len(sys.argv) < 2 or sys.argv[-1].startswith('-'):
        #     print('Usage: mnist_saved_model.py [--training_iteration=x] '
        #           '[--model_version=y] export_dir')
        #     sys.exit(-1)
        # if FLAGS.training_iteration <= 0:
        #     print('Please specify a positive value for training iteration.')
        #     sys.exit(-1)
        # if FLAGS.model_version <= 0:
        #     print('Please specify a positive value for version number.')
        #     sys.exit(-1)
    
        # Train model
        print('Training model...')
    
        mnist = mnist_input_data.read_data_sets(FLAGS.work_dir, one_hot=True)
    
        sess = tf.InteractiveSession()
    
        serialized_tf_example = tf.placeholder(tf.string, name='tf_example')
        feature_configs = {'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32), }
        tf_example = tf.parse_example(serialized_tf_example, feature_configs)
        x = tf.identity(tf_example['x'], name='x')  # use tf.identity() to assign name
        y_ = tf.placeholder('float', shape=[None, 10])
        w = tf.Variable(tf.zeros([784, 10]))
        b = tf.Variable(tf.zeros([10]))
        sess.run(tf.global_variables_initializer())
        y = tf.nn.softmax(tf.matmul(x, w) + b, name='y')
        cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
        train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
        values, indices = tf.nn.top_k(y, 10)
        table = tf.contrib.lookup.index_to_string_table_from_tensor(
            tf.constant([str(i) for i in range(10)]))
        prediction_classes = table.lookup(tf.to_int64(indices))
        for _ in range(FLAGS.training_iteration):
            batch = mnist.train.next_batch(50)
            train_step.run(feed_dict={x: batch[0], y_: batch[1]})
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
        print('training accuracy %g' % sess.run(
            accuracy, feed_dict={
                x: mnist.test.images,
                y_: mnist.test.labels
            }))
        print('Done training!')
    
        # Export model
        # WARNING(break-tutorial-inline-code): The following code snippet is
        # in-lined in tutorials, please update tutorial documents accordingly
        # whenever code changes.
    
        # export_path_base = sys.argv[-1]
        export_path_base = "/Users/xingoo/PycharmProjects/ml-in-action/实践-tensorflow/01-官方文档-学习和使用ML/save_model"
        export_path = os.path.join(tf.compat.as_bytes(export_path_base), tf.compat.as_bytes(str(FLAGS.model_version)))
        print('Exporting trained model to', export_path)
        # 配置导出地址,创建SaveModel
        builder = tf.saved_model.builder.SavedModelBuilder(export_path)
    
        # Build the signature_def_map.
    
        # 创建TensorInfo,包含type,shape,name
        classification_inputs = tf.saved_model.utils.build_tensor_info(serialized_tf_example)
        classification_outputs_classes = tf.saved_model.utils.build_tensor_info(prediction_classes)
        classification_outputs_scores = tf.saved_model.utils.build_tensor_info(values)
    
        # 分类签名:算法类型+输入+输出(概率和名字)
        classification_signature = (
            tf.saved_model.signature_def_utils.build_signature_def(
                inputs={
                    tf.saved_model.signature_constants.CLASSIFY_INPUTS:
                        classification_inputs
                },
                outputs={
                    tf.saved_model.signature_constants.CLASSIFY_OUTPUT_CLASSES:
                        classification_outputs_classes,
                    tf.saved_model.signature_constants.CLASSIFY_OUTPUT_SCORES:
                        classification_outputs_scores
                },
                method_name=tf.saved_model.signature_constants.CLASSIFY_METHOD_NAME))
    
        tensor_info_x = tf.saved_model.utils.build_tensor_info(x)
        tensor_info_y = tf.saved_model.utils.build_tensor_info(y)
    
        # 预测签名:输入的x和输出的y
        prediction_signature = (
            tf.saved_model.signature_def_utils.build_signature_def(
                inputs={'images': tensor_info_x},
                outputs={'scores': tensor_info_y},
                method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
    
        # 构建图和变量的信息:
        """
        sess                会话
        tags                标签,默认提供serving、train、eval、gpu、tpu
        signature_def_map   签名
        main_op             初始化?
        strip_default_attrs strip?
        """
        # predict_images就是服务调用的方法
        # serving_default是没有输入签名时,使用的方法
        builder.add_meta_graph_and_variables(
            sess, [tf.saved_model.tag_constants.SERVING],
            signature_def_map={
                'predict_images':
                    prediction_signature,
                tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                    classification_signature,
            },
            main_op=tf.tables_initializer(),
            strip_default_attrs=True)
    
        # 保存
        builder.save()
    
        print('Done exporting!')
    
    
    if __name__ == '__main__':
        tf.app.run()
    

    执行后,在当前目录中就有一个save_model文件,保存了各个版本的pb模型文件。

    然后基于grpc部署服务:

    docker run -p 8500:8500 --mount type=bind,source=/Users/xingoo/PycharmProjects/ml-in-action/01-实践-tensorflow/01-官方文档-学习和使用ML/save_model,target=/models/mnist -e MODEL_NAME=mnist -t tensorflow/serving &
    

    服务部署成功,查看一下docker列表:

    ➜  ~ docker ps
    CONTAINER ID        IMAGE                COMMAND                  CREATED             STATUS              PORTS                              NAMES
    39a06cc35961        tensorflow/serving   "/usr/bin/tf_serving…"   4 seconds ago       Up 3 seconds        0.0.0.0:8500->8500/tcp, 8501/tcp   hardcore_galileo
    

    然后编写对应的client代码:

    import tensorflow as tf
    import basic.mnist_input_data as mnist_input_data
    import grpc
    import numpy as np
    import sys
    import threading
    
    from tensorflow_serving.apis import predict_pb2
    from tensorflow_serving.apis import prediction_service_pb2_grpc
    
    tf.app.flags.DEFINE_integer('concurrency', 1, 'maximum number of concurrent inference requests')
    tf.app.flags.DEFINE_integer('num_tests', 100, 'Number of test images')
    tf.app.flags.DEFINE_string('server', 'localhost:8500', 'PredictionService host:port')
    tf.app.flags.DEFINE_string('work_dir', './tmp', 'Working directory. ')
    FLAGS = tf.app.flags.FLAGS
    
    test_data_set = mnist_input_data.read_data_sets(FLAGS.work_dir).test
    channel = grpc.insecure_channel(FLAGS.server)
    stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
    
    class _ResultCounter(object):
        """Counter for the prediction results."""
    
        def __init__(self, num_tests, concurrency):
            self._num_tests = num_tests
            self._concurrency = concurrency
            self._error = 0
            self._done = 0
            self._active = 0
            self._condition = threading.Condition()
    
        def inc_error(self):
            with self._condition:
                self._error += 1
    
        def inc_done(self):
            with self._condition:
                self._done += 1
                self._condition.notify()
    
        def dec_active(self):
            with self._condition:
                self._active -= 1
                self._condition.notify()
    
        def get_error_rate(self):
            with self._condition:
                while self._done != self._num_tests:
                    self._condition.wait()
                return self._error / float(self._num_tests)
    
        def throttle(self):
            with self._condition:
                while self._active == self._concurrency:
                    self._condition.wait()
                self._active += 1
    
    def _create_rpc_callback(label, result_counter):
        def _callback(result_future):
            exception = result_future.exception()
            if exception:
                result_counter.inc_error()
                print(exception)
            else:
                response = np.array(result_future.result().outputs['scores'].float_val)
                prediction = np.argmax(response)
                sys.stdout.write("%s - %s
    " % (label, prediction))
                sys.stdout.flush()
    
            result_counter.inc_done()
            result_counter.dec_active()
    
        return _callback
    
    
    result_counter = _ResultCounter(FLAGS.num_tests, FLAGS.concurrency)
    for i in range(FLAGS.num_tests):
        request = predict_pb2.PredictRequest()
        request.model_spec.name = 'mnist'
        request.model_spec.signature_name = 'predict_images'
        image, label = test_data_set.next_batch(1)
        request.inputs['images'].CopyFrom(tf.contrib.util.make_tensor_proto(image[0], shape=[1, image[0].size]))
        result_counter.throttle()
        result_future = stub.Predict.future(request, 5.0)  # 5 seconds
        result_future.add_done_callback(_create_rpc_callback(label[0], result_counter))
    
    print(result_counter.get_error_rate())
    

    得到对应的输出:

    3 - 3
    6 - 6
    9 - 9
    3 - 3
    1 - 1
    4 - 9
    1 - 5
    7 - 9
    6 - 6
    9 - 9
    0.0
    
  • 相关阅读:
    c#: List.Sort()实现稳固排序(stable sort)
    c# dt.AsEnumerable ().Join用法
    C#中new的两种用法"public new"和"new public"
    简说设计模式——观察者模式
    mysql中explain的type的解释
    mysql 查询优化 ~explain解读之select_type的解读
    代理
    charle
    like语句防止SQL注入
    java学习网站
  • 原文地址:https://www.cnblogs.com/xing901022/p/10216933.html
Copyright © 2020-2023  润新知