• 线程


     

    线程的出现

    60年代,在OS中能拥有资源和独立运行的基本单位是进程,然而随着计算机技术的发展,进程出现了很多弊端,一是由于进程是资源拥有者,创建、撤消与切换存在较大的时空开销,因此需要引入轻型进程;二是由于对称多处理机(SMP)出现,可以满足多个运行单位,而多个进程并行开销过大。
      因此在80年代,出现了能独立运行的基本单位——线程(Threads)
      注意:进程是资源分配的最小单位,线程是CPU调度的最小单位.
         每一个进程中至少有一个线程。 
     

    进程和线程的关系

    线程与进程的区别可以归纳为以下4点:
      1)地址空间和其它资源(如打开文件):进程间相互独立,同一进程的各线程间共享。某进程内的线程在其它进程不可见。
      2)通信:进程间通信IPC,线程间可以直接读写进程数据段(如全局变量)来进行通信——需要进程同步和互斥手段的辅助,以保证数据的一致性。
      3)调度和切换:线程上下文切换比进程上下文切换要快得多。
      4)在多线程操作系统中,进程不是一个可执行的实体。
     
     

    线程的特点

    在多线程的操作系统中,通常是在一个进程中包括多个线程,每个线程都是作为利用CPU的基本单位,是花费最小开销的实体。线程具有以下属性。
      1)轻型实体
      线程中的实体基本上不拥有系统资源,只是有一点必不可少的、能保证独立运行的资源。
      线程的实体包括程序、数据和TCB。线程是动态概念,它的动态特性由线程控制块TCB(Thread Control Block)描述。
     
    2)独立调度和分派的基本单位。
      在多线程OS中,线程是能独立运行的基本单位,因而也是独立调度和分派的基本单位。由于线程很“轻”,故线程的切换非常迅速且开销小(在同一进程中的)。
      3)共享进程资源。
      线程在同一进程中的各个线程,都可以共享该进程所拥有的资源,这首先表现在:所有线程都具有相同的进程id,这意味着,线程可以访问该进程的每一个内存资源;此外,还可以访问进程所拥有的已打开文件、定时器、信号量机构等。由于同一个进程内的线程共享内存和文件,所以线程之间互相通信不必调用内核。
      4)可并发执行。
      在一个进程中的多个线程之间,可以并发执行,甚至允许在一个进程中所有线程都能并发执行;同样,不同进程中的线程也能并发执行,充分利用和发挥了处理机与外围设备并行工作的能力。
     
     

    内存中的线程

    多个线程共享同一个进程的地址空间中的资源,是对一台计算机上多个进程的模拟,有时也称线程为轻量级的进程。

    而对一台计算机上多个进程,则共享物理内存、磁盘、打印机等其他物理资源。多线程的运行也多进程的运行类似,是cpu在多个线程之间的快速切换。

      不同的进程之间是充满敌意的,彼此是抢占、竞争cpu的关系,如果迅雷会和QQ抢资源。而同一个进程是由一个程序员的程序创建,所以同一进程内的线程是合作关系,一个线程可以访问另外一个线程的内存地址,大家都是共享的,一个线程干死了另外一个线程的内存,那纯属程序员脑子有问题。

      类似于进程,每个线程也有自己的堆栈,不同于进程,线程库无法利用时钟中断强制线程让出CPU,可以调用thread_yield运行线程自动放弃cpu,让另外一个线程运行。

      线程通常是有益的,但是带来了不小程序设计难度,线程的问题是:

      1. 父进程有多个线程,那么开启的子线程是否需要同样多的线程

      2. 在同一个进程中,如果一个线程关闭了文件,而另外一个线程正准备往该文件内写内容呢?

      因此,在多线程的代码中,需要更多的心思来设计程序的逻辑、保护程序的数据。

    用户级与内核级线程的对比

    内核支持线程是OS内核可感知的,而用户级线程是OS内核不可感知的。
    用户级线程的创建、撤消和调度不需要OS内核的支持,是在语言(如Java)这一级处理的;而内核支持线程的创建、撤消和调度都需OS内核提供支持,而且与进程的创建、撤消和调度大体是相同的。
    用户级线程执行系统调用指令时将导致其所属进程被中断,而内核支持线程执行系统调用指令时,只导致该线程被中断。
    在只有用户级线程的系统内,CPU调度还是以进程为单位,处于运行状态的进程中的多个线程,由用户程序控制线程的轮换运行;在有内核支持线程的系统内,CPU调度则以线程为单位,由OS的线程调度程序负责线程的调度。
    用户级线程的程序实体是运行在用户态下的程序,而内核支持线程的程序实体则是可以运行在任何状态下的程序。
    
    用户级线程和内核级线程的区别
    View Code
    优点:当有多个处理机时,一个进程的多个线程可以同时执行。
    缺点:由内核进行调度
    内核线程的优缺点
    优点:
    线程的调度不需要内核直接参与,控制简单。
    可以在不支持线程的操作系统中实现。
    创建和销毁线程、线程切换代价等线程管理的代价比内核线程少得多。
    允许每个进程定制自己的调度算法,线程管理比较灵活。
    线程能够利用的表空间和堆栈空间比内核级线程多。
    同一进程中只能同时有一个线程在运行,如果有一个线程使用了系统调用而阻塞,那么整个进程都会被挂起。另外,页面失效也会产生同样的问题。
    缺点:
    资源调度按照进程进行,多个处理机下,同一个进程中的线程只能在同一个处理机下分时复用
    
    用户级线程的优缺点
    内核级线程的优缺点

    用户级与内核级的多路复用,内核同一调度内核线程,每个内核线程对应n个用户线程

    linux操作系统的 NPTL 

    历史
    在内核2.6以前的调度实体都是进程,内核并没有真正支持线程。它是能过一个系统调用clone()来实现的,这个调用创建了一份调用进程的拷贝,跟fork()不同的是,这份进程拷贝完全共享了调用进程的地址空间。LinuxThread就是通过这个系统调用来提供线程在内核级的支持的(许多以前的线程实现都完全是在用户态,内核根本不知道线程的存在)。非常不幸的是,这种方法有相当多的地方没有遵循POSIX标准,特别是在信号处理,调度,进程间通信原语等方面。
    
    很显然,为了改进LinuxThread必须得到内核的支持,并且需要重写线程库。为了实现这个需求,开始有两个相互竞争的项目:IBM启动的NGTP(Next Generation POSIX Threads)项目,以及Redhat公司的NPTL。在2003年的年中,IBM放弃了NGTP,也就是大约那时,Redhat发布了最初的NPTL。
    
    NPTL最开始在redhat linux 9里发布,现在从RHEL3起内核2.6起都支持NPTL,并且完全成了GNU C库的一部分。
    
     
    
    设计
    NPTL使用了跟LinuxThread相同的办法,在内核里面线程仍然被当作是一个进程,并且仍然使用了clone()系统调用(在NPTL库里调用)。但是,NPTL需要内核级的特殊支持来实现,比如需要挂起然后再唤醒线程的线程同步原语futex.
    
    NPTL也是一个1*1的线程库,就是说,当你使用pthread_create()调用创建一个线程后,在内核里就相应创建了一个调度实体,在linux里就是一个新进程,这个方法最大可能的简化了线程的实现。
    
    除NPTL的1*1模型外还有一个m*n模型,通常这种模型的用户线程数会比内核的调度实体多。在这种实现里,线程库本身必须去处理可能存在的调度,这样在线程库内部的上下文切换通常都会相当的快,因为它避免了系统调用转到内核态。然而这种模型增加了线程实现的复杂性,并可能出现诸如优先级反转的问题,此外,用户态的调度如何跟内核态的调度进行协调也是很难让人满意。
    
    介绍
    介绍

    线程和python

    全局解释器锁GIL

    Python代码的执行由Python虚拟机(也叫解释器主循环)来控制。Python在设计之初就考虑到要在主循环中,同时只有一个线程在执行。虽然 Python 解释器中可以“运行”多个线程,但在任意时刻只有一个线程在解释器中运行。
      对Python虚拟机的访问由全局解释器锁(GIL)来控制,正是这个锁能保证同一时刻只有一个线程在运行。

      在多线程环境中,Python 虚拟机按以下方式执行:

      a、设置 GIL;

      b、切换到一个线程去运行;

      c、运行指定数量的字节码指令或者线程主动让出控制(可以调用 time.sleep(0));

      d、把线程设置为睡眠状态;

      e、解锁 GIL;

      d、再次重复以上所有步骤。
      在调用外部代码(如 C/C++扩展函数)的时候,GIL将会被锁定,直到这个函数结束为止(由于在这期间没有Python的字节码被运行,所以不会做线程切换)编写扩展的程序员可以主动解锁GIL。

    threading模块

    multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性,因而不再详细介绍(官方链接

    线程的创建Threading.Thread类

    线程的创建

    from threading import Thread
    import time
    def sayhi(name):
        time.sleep(2)
        print('%s say hello' %name)
    
    if __name__ == '__main__':
        t=Thread(target=sayhi,args=('egon',))
        t.start()
        print('主线程')
    
    创建线程的方式1
    from threading import Thread
    import time
    class Sayhi(Thread):
        def __init__(self,name):
            super().__init__()
            self.name=name
        def run(self):
            time.sleep(2)
            print('%s say hello' % self.name)
    
    
    if __name__ == '__main__':
        t = Sayhi('egon')
        t.start()
        print('主线程')
    
    创建线程的方式2

    主线程默认等子线程执行完毕

    import threading
    import time
    def func(arg):
         time.sleep(arg)
         print(arg)
    
    
     t1 = threading.Thread(target=func,args=(3,))
     t1.start()
    
     t2 = threading.Thread(target=func,args=(9,))
     t2.start()
    
     print(123)

    setDaemon 主线程不再等,主线程终止则所有子线程终止

    import time
    import threading
    def func(arg):
        time.sleep(2)
        print(arg)
    
    t1 = threading.Thread(target=func,args=(3,))
    t1.setDaemon(True)
    t1.start()
    
    t2 = threading.Thread(target=func,args=(9,))
    t2.setDaemon(True)
    t2.start()
    
    print(123)

    开发者可以控制主线程等待子线程(最多等待时间)

    import threading
    import time
    def func(arg):
        time.sleep(5)
        print(arg)
    
    print('创建子线程t1')
    t1 = threading.Thread(target=func,args=(3,))
    t1.start()
    # 无参数,让主线程在这里等着,等到子线程t1执行完毕,才可以继续往下走。
    # 有参数,让主线程在这里最多等待n秒,无论是否执行完毕,会继续往下走。
    t1.join()
    
    print('创建子线程t2')
    t2 = threading.Thread(target=func,args=(9,))
    t2.start()
    t2.join(2) # 让主线程在这里等着,等到子线程t2执行完毕,才可以继续往下走。
    
    print(123)

    创建子线程t1
    3
    创建子线程t2  t2睡5秒  只等两秒 所以先继续执行123 再打印9
    123
    9

    设置线程名称 获取线程名称

    def func(arg):
    #     # 获取当前执行该函数的线程的对象
    #     t = threading.current_thread()
    #     # 根据当前线程对象获取当前线程名称
    #     name = t.getName()
    #     print(name,arg)
    #
    # t1 = threading.Thread(target=func,args=(11,))
    # t1.setName('zhh')
    # t1.start()
    #
    # t2 = threading.Thread(target=func,args=(22,))
    # t2.setName('zy')
    # t2.start()
    #
    # print(123)


    zhh 11
    zy 22
    123

     线程锁(Lock、RLock)

    由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,当多个线程同时修改同一条数据时可能会出现脏数据,所以,出现了线程锁 - 同一时刻允许一个线程执行操作。

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import threading
    import time
    
    gl_num = 0
    
    def show(arg):
        global gl_num
        time.sleep(1)
        gl_num +=1
        print gl_num
    
    for i in range(10):
        t = threading.Thread(target=show, args=(i,))
        t.start()
    
    print 'main thread stop'
    
    未使用锁
    未使用锁
    import threading
    import time
       
    gl_num = 0
       
    lock = threading.RLock()
       
    def Func():
        lock.acquire()
        global gl_num
        gl_num +=1
        time.sleep(1)
        print gl_num
        lock.release()
           
    for i in range(10):
        t = threading.Thread(target=Func)
        t.start()
    使用rlock

    信号量(Semaphore)

    互斥锁 同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据 ,比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去。

    import time
    import threading
    
    lock = threading.BoundedSemaphore(3)
    def func(arg):
        lock.acquire()
        print(arg)
        time.sleep(1)
        lock.release()
    
    
    for i in range(20):
        t =threading.Thread(target=func,args=(i,))
        t.start()
    一次放行3个

    条件(Condition)

    使得线程等待,只有满足某条件时,才释放n个线程

    import time
    import threading
    lock = threading.Condition()
    def func(arg):
        print('线程进来了')
        lock.acquire()
        lock.wait() # 加锁
    
        print(arg)
        time.sleep(1)
    
        lock.release()
    
    
    for i in range(10):
        t =threading.Thread(target=func,args=(i,))
        t.start()
    
    while True:
        inp = int(input('>>>'))
    
        lock.acquire()
        lock.notify(inp)
        lock.release()
    
    输入几 放行几个线程
    def xxxx():
        print('来执行函数了')
        input(">>>")
        # ct = threading.current_thread() # 获取当前线程
        # ct.getName()
        return True
    
    def func(arg):
        print('线程进来了')
        lock.wait_for(xxxx)
        print(arg)
        time.sleep(1)
    
    for i in range(10):
        t =threading.Thread(target=func,args=(i,))
        t.start()
    方式二

    事件(event)

    python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。

    事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。

    • clear:将“Flag”设置为False
    • set:将“Flag”设置为True
    lock = threading.Event()
    
    
    def func(arg):
        print('线程来了')
        lock.wait() # 加锁:阻塞
        print(arg)
    
    
    for i in range(10):
        t =threading.Thread(target=func,args=(i,))
        t.start()
    
    input(">>>>")
    lock.set() # 绿灯
    
    
    lock.clear() # 再次变红灯
    
    for i in range(10):
        t =threading.Thread(target=func,args=(i,))
        t.start()
    
    input(">>>>")
    lock.set()
    View Code

    GIL VS Lock

    锁的目的是为了保护共享的数据,同一时间只能有一个线程来修改共享的数据

        然后,我们可以得出结论:保护不同的数据就应该加不同的锁。

     最后,问题就很明朗了,GIL 与Lock是两把锁,保护的数据不一样,前者是解释器级别的(当然保护的就是解释器级别的数据,比如垃圾回收的数据),后者是保护用户自己开发的应用程序的数据,很明显GIL不负责这件事,只能用户自定义加锁处理,即Lock

    过程分析:所有线程抢的是GIL锁,或者说所有线程抢的是执行权限

      线程1抢到GIL锁,拿到执行权限,开始执行,然后加了一把Lock,还没有执行完毕,即线程1还未释放Lock,有可能线程2抢到GIL锁,开始执行,执行过程中发现Lock还没有被线程1释放,于是线程2进入阻塞,被夺走执行权限,有可能线程1拿到GIL,然后正常执行到释放Lock。。。这就导致了串行运行的效果

      既然是串行,那我们执行

      t1.start()

      t1.join

      t2.start()

      t2.join()

      这也是串行执行啊,为何还要加Lock呢,需知join是等待t1所有的代码执行完,相当于锁住了t1的所有代码,而Lock只是锁住一部分操作共享数据的代码。

     

     threading.local

    作用 : 内部自动为每个线程维护一个空间(字典),用于当前存取属于自己的值。保证线程之间的数据隔离。

    v = threading.local()
    
    def func(arg):
        # 内部会为当前线程创建一个空间用于存储:phone=自己的值
        v.phone = arg
        time.sleep(2)
        print(v.phone,arg) # 去当前线程自己空间取值
    
    for i in range(10):
        t =threading.Thread(target=func,args=(i,))
        t.start()
    import time
    import threading
    
    DATA_DICT = {}
    
    def func(arg):
        ident = threading.get_ident()
        DATA_DICT[ident] = arg
        time.sleep(1)
        print(DATA_DICT[ident],arg)
    
    
    for i in range(10):
        t =threading.Thread(target=func,args=(i,))
        t.start()
    原理
    import time
    import threading
    INFO = {}
    class Local(object):
    
        def __getattr__(self, item):
            ident = threading.get_ident()
            return INFO[ident][item]
    
        def __setattr__(self, key, value):
            ident = threading.get_ident()
            if ident in INFO:
                INFO[ident][key] = value
            else:
                INFO[ident] = {key:value}
    
    obj = Local()
    
    def func(arg):
        obj.phone = arg # 调用对象的 __setattr__方法(“phone”,1)
        time.sleep(2)
        print(obj.phone,arg)
    
    
    for i in range(10):
        t =threading.Thread(target=func,args=(i,))
        t.start()
    View Code

    线程池  一次指定开启线程个数,避免开启过多线程 增加cpu 上下文切换

    from concurrent.futures import ThreadPoolExecutor
    import time
    
    def task(a1,a2):
        time.sleep(2)
        print(a1,a2)
    
    # 创建了一个线程池(最多5个线程)
    pool = ThreadPoolExecutor(5)
    
    for i in range(40):
        # 去线程池中申请一个线程,让线程执行task函数。
        pool.submit(task,i,8)
  • 相关阅读:
    webpack
    react 原理
    jest
    input 自动获取焦点
    taro
    html5标签
    webpack
    每日日报
    每日日报
    每日日报
  • 原文地址:https://www.cnblogs.com/xihuxiangri/p/9628096.html
Copyright © 2020-2023  润新知