• sicily 1034. Forest


    Description

    In the field of computer science, forest is important and deeply researched , it is a model for many data structures . Now it’s your job here to calculate the depth and width of given forests.

         Precisely, a forest here is a directed graph with neither loop nor two edges pointing to the same node. Nodes with no edge pointing to are roots, we define that roots are at level 0 . If there’s an edge points from node A to node B , then node B is called a child of node A , and we define that B is at level (k+1) if and only if A is at level k .

          We define the depth of a forest is the maximum level number of all the nodes , the width of a forest is the maximum number of nodes at the same level.
    Input
    There’re several test cases. For each case, in the first line there are two integer numbers n and m (1≤n≤100, 0≤m≤100, m≤n*n) indicating the number of nodes and edges respectively , then m lines followed , for each line of these m lines there are two integer numbers a and b (1≤a,b≤n)indicating there’s an edge pointing from a to b. Nodes are represented by numbers between 1 and n .n=0 indicates end of input.
    Output

    For each case output one line of answer , if it’s not a forest , i.e. there’s at least one loop or two edges pointing to the same node, output “INVALID”(without quotation mark), otherwise output the depth and width of the forest, separated by a white space.

    Sample Input
     Copy sample input to clipboard 
    1 0
    1 1
    1 1
    3 1
    1 3
    2 2
    1 2
    2 1
    0 88
    
    Sample Output
    0 1
    INVALID
    1 2
    INVALID
    这题主要考虑环的问题吧,还有要注意的就是单个元素自身成环和没有根节点的情况
    #include <iostream>
    #include <cstring>
    #include <stack>
    #include <vector>
    
    using namespace std;
    
    struct Node{
        Node(int v = -1, int l = 0):value(v), level(l) { }
        int value;
        int level;
    };
    
    int main(int argc, char const *argv[])
    {
        int n, m, a, b;
        int level[101];  // 记录每层的个数
        bool visited[101];  // 用于判断是否形成环
        while (cin >> n >> m && n != 0) {
            vector<int> node[101];
            Node parent[101];  // 记录父节点
    
            memset(level, 0, sizeof(level));
            memset(visited, false, sizeof(visited));
            bool isSucceed = true;
    
            for (int i = 0; i != m; ++i) {
                cin >> a >> b;
                if (a == b) {  // 元素指向自身
                    isSucceed = false;
                    continue;
                }
    
                node[a - 1].push_back(b - 1);  // 元素值是从 1 开始的
                if (parent[b - 1].value == -1)
                    parent[b - 1].value = a - 1;
                else
                    isSucceed = false;
            }
    
            bool hasRoot = false;  // 是否有根节点
            if (isSucceed) {
                for (int i = 0; i != n; ++i) {
                    if (!isSucceed)
                        break;
                    if (parent[i].value == -1) {  // 从根节点遍历每一棵树
                        hasRoot = true;
                        stack<int> s;
                        s.push(i);
                        while (!s.empty()) {
                            if (!isSucceed)
                                break;
                            int current = s.top();
                            visited[current] = true;
                            if (current != i)
                                parent[current].level = parent[parent[current].value].level + 1;  // 子节点level等于父节点+1
    
                            s.pop();
                            for (int j = 0; j != node[current].size(); ++j) {
                                if (visited[node[current][j]]) {  // 形成了环
                                    isSucceed = false;
                                    break;
                                }
                                s.push(node[current][j]);
                            }
                        }
                    }
                }
            }
            if (isSucceed) {
                for (int i = 0; i != n; ++i) {
                    level[parent[i].level]++;
                }
            }
            if (!isSucceed || !hasRoot) {
                cout << "INVALID" << endl;
                continue;
            }
    
            int levelMax = -1;
            int index = -1;
            for (int i = 0; i != n; ++i) {
                if (level[i] == 0)
                    break;
                if (levelMax < level[i]) {
                    levelMax = level[i];
                }
                index++;
            }
            cout << index << " " << levelMax << endl;
        }
    
        return 0;
    }
  • 相关阅读:
    SpringBoot
    SpringBoot
    MySQL
    Database
    Database
    MySQL
    Debug
    《mysql必知必会》学习_第18章
    C#中访问私有成员
    精彩语录收集
  • 原文地址:https://www.cnblogs.com/xiezhw3/p/4051976.html
Copyright © 2020-2023  润新知