• 第三次作业:卷积神经网络 part 2


    MobileNetV1

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torchvision
    import torchvision.transforms as transforms
    import matplotlib.pyplot as plt
    import numpy as np
    import torch.optim as optim
    
    class Block(nn.Module):
        '''
        Depthwise conv + Pointwise conv
        输入参数:
        in_planes: 输入特征图的通道数
        out_planes: 输出特征图的通道数 
        stride: 步长,默认值 1
        功能:
        首先构造深度卷积,设置卷积核个数和输入通道数都为in_planes
        然后构造点卷积,输入通道数in_planes,卷积核个数out_planes
        '''
     
        def __init__(self, in_planes, out_planes, stride=1):
            super(Block, self).__init__()
            # Depthwise 卷积,3*3 的卷积核,分为 in_planes,即各层单独进行卷积
            self.conv1 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=in_planes, bias=False)
            self.bn1 = nn.BatchNorm2d(in_planes)
            # Pointwise 卷积,1*1 的卷积核
            self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False)
            self.bn2 = nn.BatchNorm2d(out_planes)
    
        def forward(self, x):
            out = F.relu(self.bn1(self.conv1(x)))
            out = F.relu(self.bn2(self.conv2(out)))
            return out
        
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    transform_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
    
    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
    
    trainset = torchvision.datasets.CIFAR10(root='./data', train=True,  download=True, transform=transform_train)
    testset  = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
    
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
    testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
    
    class MobileNetV1(nn.Module):
        # (128,2) means conv planes=128, stride=2
        cfg = [(64,1), (128,2), (128,1), (256,2), (256,1), (512,2), (512,1), 
               (1024,2), (1024,1)]
    
        def __init__(self, num_classes=10):
            super(MobileNetV1, self).__init__()
            self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False)
            self.bn1 = nn.BatchNorm2d(32)
            self.layers = self._make_layers(in_planes=32)
            self.linear = nn.Linear(1024, num_classes)
    
        def _make_layers(self, in_planes):
            layers = []
            for x in self.cfg:
                out_planes = x[0]
                stride = x[1]
                layers.append(Block(in_planes, out_planes, stride))
                in_planes = out_planes
            return nn.Sequential(*layers)
    
        def forward(self, x):
            out = F.relu(self.bn1(self.conv1(x)))
            out = self.layers(out)
            out = F.avg_pool2d(out, 2)
            out = out.view(out.size(0), -1)
            out = self.linear(out)
            return out
    net = MobileNetV1().to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(), lr=0.001)
    net.train()
    for epoch in range(10):  # 重复多轮训练
        for i, (inputs, labels) in enumerate(trainloader):
            inputs = inputs.to(device)
            labels = labels.to(device)
            # 优化器梯度归零
            optimizer.zero_grad()
            # 正向传播 + 反向传播 + 优化 
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            # 输出统计信息
            if i % 100 == 0:   
                print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))
    
    print('Finished Training')
    net.eval()
    count = 0
    for inputs,labels in testloader:
      inputs = inputs.to(device)
    
      labels = labels.to(device)
      outputs = net(inputs)
      _,preds = torch.max(outputs,1)
      count += (preds == labels).sum().item()
    print("Test ACC:{}".format(count/len(testset)))
    

    运行如果:

    这段代码需要注意的地方是卷积核有个参数groups,作用是将通道进行分组。传统卷积层 groups参数为默认值 1。分组个数必须能被输入通道数和输出通道数整除。
    举个例子:

    in_channels = 6,feature_map = 3 x 3,kernel_size = 1 x 1,假设out_channels = 6;

    和 groups = 1的联系:
    groups=1,6个channel属于同一组,卷积核大小是 1 x 6 x 1 x 1,out_channels/groups = 6,需要6个 1 x 6 x 1 x 1,传统卷积层参数的个数是6 x 6 x 1 x 1。


    in_channels = 6,feature_map = 3 x 3,kernel_size = 1 x 1,假设out_channels = 6;

    和 groups = 3的联系:
    groups=3,2个channel划分为一组,每组使用1个2 x 1 x 1的卷积核,3组就是3 x 2 x 1 x 1,out_channels/groups = 2,需要2个 3 x 2 x 1 x 1,那么该层的参数个数是6 x 2 x 1 x 1。理解为划分为 N 组,每组 in_channels/N 个channel,每组用out_channels/N 个卷积核进行卷积,得到 out_channels/N 个feature_map,那么N组就共有 N * out_channels/N = out_channels 个feature_map。

    深度卷积中设置groups=in_channels,假设 in_channels = 6,groups = 6,feature_map = 3 x 3,kernel_size = 1 x 1,out_channels = 6;按照上面的逻辑,1个channel划分为一组,每组使用1个1 x 1 x 1的卷积核,6组就是6 x 1 x 1 x 1,out_channels/groups = 1,需要1个6 x 1 x 1 x 1,该层的参数个数是6 x 1 x 1 x 1。符合我们的理解。

    MobileNetV2

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torchvision
    import torchvision.transforms as transforms
    import matplotlib.pyplot as plt
    import numpy as np
    import torch.optim as optim
    
    class Block(nn.Module):
        '''expand + depthwise + pointwise'''
        def __init__(self, in_planes, out_planes, expansion, stride):
            super(Block, self).__init__()
            self.stride = stride
            # 通过 expansion 增大 feature map 的数量
            planes = expansion * in_planes
            self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, stride=1, padding=0, bias=False)
            self.bn1 = nn.BatchNorm2d(planes)
            self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, groups=planes, bias=False)
            self.bn2 = nn.BatchNorm2d(planes)
            self.conv3 = nn.Conv2d(planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False)
            self.bn3 = nn.BatchNorm2d(out_planes)
    
            # 步长为 1 时,如果 in 和 out 的 feature map 通道不同,用一个卷积改变通道数
            if stride == 1 and in_planes != out_planes:
                self.shortcut = nn.Sequential(
                    nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False),
                    nn.BatchNorm2d(out_planes))
            # 步长为 1 时,如果 in 和 out 的 feature map 通道相同,直接返回输入
            if stride == 1 and in_planes == out_planes:
                self.shortcut = nn.Sequential()
    
        def forward(self, x):
            #print('x:',x.shape)
            out = F.relu(self.bn1(self.conv1(x)))
            #print('out1:',out.shape)
            out = F.relu(self.bn2(self.conv2(out)))
            #print('out2:',out.shape)
            out = self.bn3(self.conv3(out))
            #print('out3'out.shape)
    
            # 步长为1,加 shortcut 操作
            if self.stride == 1:
                return out + self.shortcut(x)
            # 步长为2,直接输出
            else:
                return out
    class MobileNetV2(nn.Module):
        # (expansion, out_planes, num_blocks, stride)
        cfg = [(1,  16, 1, 1),
               (6,  24, 2, 1), 
               (6,  32, 3, 2),
               (6,  64, 4, 2),
               (6,  96, 3, 1),
               (6, 160, 3, 2),
               (6, 320, 1, 1)]
    
        def __init__(self, num_classes=10):
            super(MobileNetV2, self).__init__()
            self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False)
            self.bn1 = nn.BatchNorm2d(32)
            self.layers = self._make_layers(in_planes=32)
            self.conv2 = nn.Conv2d(320, 1280, kernel_size=1, stride=1, padding=0, bias=False)
            self.bn2 = nn.BatchNorm2d(1280)
            self.linear = nn.Linear(1280, num_classes)
    
        def _make_layers(self, in_planes):
            layers = []
            for expansion, out_planes, num_blocks, stride in self.cfg:
                strides = [stride] + [1]*(num_blocks-1)
                for stride in strides:
                    layers.append(Block(in_planes, out_planes, expansion, stride))
                    in_planes = out_planes
            return nn.Sequential(*layers)
    
        def forward(self, x):
            out = F.relu(self.bn1(self.conv1(x)))
            out = self.layers(out)
            out = F.relu(self.bn2(self.conv2(out)))
            out = F.avg_pool2d(out, 4)
            out = out.view(out.size(0), -1)
            out = self.linear(out)
            return out
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    transform_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
    
    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
    
    trainset = torchvision.datasets.CIFAR10(root='./data', train=True,  download=True, transform=transform_train)
    testset  = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
    
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
    testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
    
    net = MobileNetV2().to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(), lr=0.001)
    net.train()
    for epoch in range(10):  # 重复多轮训练
        for i, (inputs, labels) in enumerate(trainloader):
            inputs = inputs.to(device)
            labels = labels.to(device)
            # 优化器梯度归零
            optimizer.zero_grad()
            # 正向传播 + 反向传播 + 优化 
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            # 输出统计信息
            if i % 100 == 0:   
                print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))
    
    print('Finished Training')
    net.eval()
    count = 0
    for inputs,labels in testloader:
      inputs = inputs.to(device)
      labels = labels.to(device)
      outputs = net(inputs)
      _,preds = torch.max(outputs,1)
      count += (preds == labels).sum().item()
    print("Test ACC:{}".format(count/len(testset)))
    

    MobileNetV2的结构图如下所示:

    t 是输入通道的倍增系数 结构中先1 x 1 卷积升维,升维就是从in_channels 升到 t * in_channels。

    n 是该模块重复次数

    c 是输出通道数

    s 是该模块第一个Block的 stride(第一个Block的 深度卷积层的stride),后面的Block都是 stride = 1

    另外,代码中给的结构和实际模型的参数不相同,原因是MobileNet V2 的结构的参数是按照 224 x 224 x 3的输入设计的,CIFAR-10数据集的大小是32 x 32,假设我们不改变MobileNetV2 的参数,那么在32 x32 x 3的输入在最后一个卷积层得到的特征图大小是1 x 1,那么运行后面avg_pool的时候 参数如果大于1就会出错。可以验证将代码中 out = F.avg_pool2d(out, 4)改为 out = F.avg_pool2d(out, 1)是可以运行的。

    HybridSN

    ! wget http://www.ehu.eus/ccwintco/uploads/6/67/Indian_pines_corrected.mat
    ! wget http://www.ehu.eus/ccwintco/uploads/c/c4/Indian_pines_gt.mat
    ! pip install spectral
    import numpy as np
    import matplotlib.pyplot as plt
    import scipy.io as sio
    from sklearn.decomposition import PCA
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import confusion_matrix, accuracy_score, classification_report, cohen_kappa_score
    import spectral
    import torch
    import torchvision
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    
    class_num = 16
    
    class HybridSN(nn.Module):
      def __init__(self):
        super(HybridSN,self).__init__()
        self.conv3d1 = nn.Conv3d(1,8,kernel_size=(7,3,3),stride=1,padding=0)
        self.bn1 = nn.BatchNorm3d(8)
        self.conv3d2 = nn.Conv3d(8,16,kernel_size=(5,3,3),stride=1,padding=0)
        self.bn2 = nn.BatchNorm3d(16)
        self.conv3d3 = nn.Conv3d(16,32,kernel_size=(3,3,3),stride=1,padding=0)
        self.bn3 = nn.BatchNorm3d(32)
        self.conv2d4 = nn.Conv2d(576,64,kernel_size=(3,3),stride=1,padding=0)
        self.bn4 = nn.BatchNorm2d(64)
        self.fc1 = nn.Linear(18496,256)
        self.fc2 = nn.Linear(256,128)
        self.fc3 = nn.Linear(128,16)
        self.dropout = nn.Dropout(0.4)
    
      def forward(self,x):
        out = F.relu(self.bn1(self.conv3d1(x)))
        out = F.relu(self.bn2(self.conv3d2(out)))
        out = F.relu(self.bn3(self.conv3d3(out)))
        out = F.relu(self.bn4(self.conv2d4(out.reshape(out.shape[0],-1,19,19))))
        out = out.reshape(out.shape[0],-1)
        out = F.relu(self.dropout(self.fc1(out)))
        out = F.relu(self.dropout(self.fc2(out)))
        out = self.fc3(out)
        return out
    
    
    def applyPCA(X, numComponents):
        newX = np.reshape(X, (-1, X.shape[2]))
        pca = PCA(n_components=numComponents, whiten=True)
        newX = pca.fit_transform(newX)
        newX = np.reshape(newX, (X.shape[0], X.shape[1], numComponents))
        return newX
    
    # 对单个像素周围提取 patch 时,边缘像素就无法取了,因此,给这部分像素进行 padding 操作
    def padWithZeros(X, margin=2):
        newX = np.zeros((X.shape[0] + 2 * margin, X.shape[1] + 2* margin, X.shape[2]))
        x_offset = margin
        y_offset = margin
        newX[x_offset:X.shape[0] + x_offset, y_offset:X.shape[1] + y_offset, :] = X
        return newX
    
    # 在每个像素周围提取 patch ,然后创建成符合 keras 处理的格式
    def createImageCubes(X, y, windowSize=5, removeZeroLabels = True):
        # 给 X 做 padding
        margin = int((windowSize - 1) / 2)
        zeroPaddedX = padWithZeros(X, margin=margin)
        # split patches
        patchesData = np.zeros((X.shape[0] * X.shape[1], windowSize, windowSize, X.shape[2]))
        patchesLabels = np.zeros((X.shape[0] * X.shape[1]))
        patchIndex = 0
        for r in range(margin, zeroPaddedX.shape[0] - margin):
            for c in range(margin, zeroPaddedX.shape[1] - margin):
                patch = zeroPaddedX[r - margin:r + margin + 1, c - margin:c + margin + 1]   
                patchesData[patchIndex, :, :, :] = patch
                patchesLabels[patchIndex] = y[r-margin, c-margin]
                patchIndex = patchIndex + 1
        if removeZeroLabels:
            patchesData = patchesData[patchesLabels>0,:,:,:]
            patchesLabels = patchesLabels[patchesLabels>0]
            patchesLabels -= 1
        return patchesData, patchesLabels
    
    def splitTrainTestSet(X, y, testRatio, randomState=345):
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=testRatio, random_state=randomState, stratify=y)
        return X_train, X_test, y_train, y_test
    # 地物类别
    class_num = 16
    X = sio.loadmat('Indian_pines_corrected.mat')['indian_pines_corrected']
    y = sio.loadmat('Indian_pines_gt.mat')['indian_pines_gt']
    
    # 用于测试样本的比例
    test_ratio = 0.90
    # 每个像素周围提取 patch 的尺寸
    patch_size = 25
    # 使用 PCA 降维,得到主成分的数量
    pca_components = 30
    
    print('Hyperspectral data shape: ', X.shape)
    print('Label shape: ', y.shape)
    
    print('
    ... ... PCA tranformation ... ...')
    X_pca = applyPCA(X, numComponents=pca_components)
    print('Data shape after PCA: ', X_pca.shape)
    
    print('
    ... ... create data cubes ... ...')
    X_pca, y = createImageCubes(X_pca, y, windowSize=patch_size)
    print('Data cube X shape: ', X_pca.shape)
    print('Data cube y shape: ', y.shape)
    
    print('
    ... ... create train & test data ... ...')
    Xtrain, Xtest, ytrain, ytest = splitTrainTestSet(X_pca, y, test_ratio)
    print('Xtrain shape: ', Xtrain.shape)
    print('Xtest  shape: ', Xtest.shape)
    
    # 改变 Xtrain, Ytrain 的形状,以符合 keras 的要求
    Xtrain = Xtrain.reshape(-1, patch_size, patch_size, pca_components, 1)
    Xtest  = Xtest.reshape(-1, patch_size, patch_size, pca_components, 1)
    print('before transpose: Xtrain shape: ', Xtrain.shape) 
    print('before transpose: Xtest  shape: ', Xtest.shape) 
    
    # 为了适应 pytorch 结构,数据要做 transpose
    Xtrain = Xtrain.transpose(0, 4, 3, 1, 2)
    Xtest  = Xtest.transpose(0, 4, 3, 1, 2)
    print('after transpose: Xtrain shape: ', Xtrain.shape) 
    print('after transpose: Xtest  shape: ', Xtest.shape) 
    
    
    """ Training dataset"""
    class TrainDS(torch.utils.data.Dataset): 
        def __init__(self):
            self.len = Xtrain.shape[0]
            self.x_data = torch.FloatTensor(Xtrain)
            self.y_data = torch.LongTensor(ytrain)        
        def __getitem__(self, index):
            # 根据索引返回数据和对应的标签
            return self.x_data[index], self.y_data[index]
        def __len__(self): 
            # 返回文件数据的数目
            return self.len
    
    """ Testing dataset"""
    class TestDS(torch.utils.data.Dataset): 
        def __init__(self):
            self.len = Xtest.shape[0]
            self.x_data = torch.FloatTensor(Xtest)
            self.y_data = torch.LongTensor(ytest)
        def __getitem__(self, index):
            # 根据索引返回数据和对应的标签
            return self.x_data[index], self.y_data[index]
        def __len__(self): 
            # 返回文件数据的数目
            return self.len
    
    # 创建 trainloader 和 testloader
    trainset = TrainDS()
    testset  = TestDS()
    train_loader = torch.utils.data.DataLoader(dataset=trainset, batch_size=128, shuffle=True, num_workers=2)
    test_loader  = torch.utils.data.DataLoader(dataset=testset,  batch_size=128, shuffle=False, num_workers=2)
    # 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    # 网络放到GPU上
    net = HybridSN().to(device)
    
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(), lr=0.001)
    
    # 开始训练
    total_loss = 0
    net.train()
    for epoch in range(100):
        for i, (inputs, labels) in enumerate(train_loader):
            inputs = inputs.to(device)
            labels = labels.to(device)
            # 优化器梯度归零
            optimizer.zero_grad()
            # 正向传播 + 反向传播 + 优化 
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            total_loss += loss.item()
            nn.ReLU()
        print('[Epoch: %d]   [loss avg: %.4f]   [current loss: %.4f]' %(epoch + 1, total_loss/(epoch+1), loss.item()))
    
    print('Finished Training')
    net.eval()
    count = 0
    for inputs,labels in test_loader:
      inputs = inputs.to(device)
      labels = labels.to(device)
      outputs = net(inputs)
      _,preds = torch.max(outputs,1)
      count += (preds == labels).sum().item()
    print("Test ACC:{}".format(count/len(testset)))
    

    添加了BN层,准确度略有提高。

    添加学习率衰减 scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min',verbose=True,factor=0.9,min_lr=1e-6)
    ,准确度略有提高。

  • 相关阅读:
    常用网址
    设备像素比devicePixelRatio简单介绍
    VR虚拟红包的技术实现
    jQuery重置表单
    jQuery,遍历表格每个单元格数据。
    java 23种设计模式 链接集锦
    webstorm创建nodejs + express + jade 的web 项目
    类与类之间的几种关系
    JS 中的事件绑定、事件监听、事件委托是什么?
    简单的JavaScript图像延迟加载库Echo.js
  • 原文地址:https://www.cnblogs.com/xiezhijie/p/13455870.html
Copyright © 2020-2023  润新知