(一),安装eclipse
1,下载eclipse,点这里
2,将文件上传到Centos7,可以用WinSCP
3,解压并安装eclipse
[root@Master opt]# tar zxvf '/home/s/eclipse-jee-neon-1a-linux-gtk-x86_64.tar.gz' -C/opt ---------------> 建立文件:[root@Master opt]# mkdir /usr/bin/eclipse ------------------》添加链接,即快捷方式:[root@Master opt]# ln -s /opt/eclipse/eclipse /usr/bin/eclipse -----------》点击eclipse,即可启动了
(二),建立Hadoop项目
1,下载hadoop plugin 2.7.3 链接:http://pan.baidu.com/s/1i5yRyuh 密码:ms91
2,解压上述jar包插件,放到eclipse中plugins中,并重启eclipse
2, 在eclipse中加载dfs库,点击Windows 工具栏-------->选择show view如图:
2,打开resource 点击Window ----->Perspective----------->open Perspective 选择resource:
3,配置连接端口,点击eclipse下放的MapResource Location,点击添加:其中port号按照hdfs-site.xml 和core-site.xml来填写。
4,上传输入文件:使用hdfs dfs -put /home/file1 /data 即可在eclipse中看到如下:(要确保各个机器的防火墙都关闭,出现异常可以暂时不用关,后面跑下例子就全没了,呵呵)
(三),测试WordCount程序
1,新建项目:点击new ------------》project ----------->Map Reduce,如图:
2,给项目配置本地的hadoop文件,圆圈处写本地hadoop的路径:
3,新建个mappert类,写如下代码:
1 package word; 2 3 import java.io.IOException; 4 import java.util.StringTokenizer; 5 6 import org.apache.hadoop.conf.Configuration; 7 import org.apache.hadoop.fs.Path; 8 import org.apache.hadoop.io.IntWritable; 9 import org.apache.hadoop.io.Text; 10 import org.apache.hadoop.mapreduce.Job; 11 import org.apache.hadoop.mapreduce.Mapper; 12 import org.apache.hadoop.mapreduce.Reducer; 13 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 14 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 15 import org.apache.hadoop.util.GenericOptionsParser; 16 17 public class mapper { 18 19 public static class TokenizerMapper 20 extends Mapper<Object, Text, Text, IntWritable>{ 21 22 private final static IntWritable one = new IntWritable(1); 23 private Text word = new Text(); 24 25 public void map(Object key, Text value, Context context 26 ) throws IOException, InterruptedException { 27 StringTokenizer itr = new StringTokenizer(value.toString()); 28 while (itr.hasMoreTokens()) { 29 word.set(itr.nextToken()); 30 context.write(word, one); 31 } 32 } 33 } 34 35 public static class IntSumReducer 36 extends Reducer<Text,IntWritable,Text,IntWritable> { 37 private IntWritable result = new IntWritable(); 38 39 public void reduce(Text key, Iterable<IntWritable> values, 40 Context context 41 ) throws IOException, InterruptedException { 42 int sum = 0; 43 for (IntWritable val : values) { 44 sum += val.get(); 45 } 46 result.set(sum); 47 context.write(key, result); 48 } 49 } 50 51 public static void main(String[] args) throws Exception { 52 Configuration conf = new Configuration(); 53 54 String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); 55 if (otherArgs.length != 2) { 56 System.err.println(otherArgs.length); 57 System.err.println("Usage: wordcount <in> <out>"); 58 System.exit(2); 59 } 60 Job job = new Job(conf, "word count"); 61 job.setJarByClass(mapper.class); 62 job.setMapperClass(TokenizerMapper.class); 63 job.setCombinerClass(IntSumReducer.class); 64 job.setReducerClass(IntSumReducer.class); 65 job.setOutputKeyClass(Text.class); 66 job.setOutputValueClass(IntWritable.class); 67 FileInputFormat.addInputPath(job, new Path(otherArgs[0])); 68 FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); 69 System.out.print("ok"); 70 System.exit(job.waitForCompletion(true) ? 0 : 1); 71 } 72 }
2,点击run as ------------>RunConfigurations ---------->设置input和output文件参数
3,点击run,查看结果
文件的内容: