进程:对于操作系统来说,一个任务就是一个进程(Process)
比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程,打开一个Word就启动了一个Word进程。
线程:在一个进程内部,要同时干多件事,就需要同时运行多个“子任务”,我们把进程内的这些“子任务”称为线程(Thread)
比如Word,它可以同时进行打字、拼写检查、打印等事情。真正地同时执行多线程需要多核CPU才可能实现。
多任务的实现有3种方式:
- 多进程模式;
- 多线程模式;
- 多进程+多线程模式。
线程是最小的执行单元,而进程由至少一个线程组成。如何调度进程和线程,完全由操作系统决定,程序自己不能决定什么时候执行,执行多长时间。
多进程和多线程的程序涉及到同步、数据共享的问题,编写起来更复杂。
多进程
Unix/Linux操作系统提供了一个fork()
系统调用。普通的函数调用,调一次返一次,但fork()
调一次返两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),分别在父进程和子进程内返回。
子进程永远返回0
,而父进程返回子进程的ID。因为一个父进程可以fork出很多子进程,所以,父进程要记下子进程的ID,子进程调用getppid()
拿到父进程的ID。
# Python的os
模块封装了常见的系统调用,其中就包括fork
,可以在Python程序中轻松创建子进程:
import os print('Process (%s) start...' % os.getpid()) # Only works on Unix/Linux/Mac: pid = os.fork() if pid == 0: print('I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid())) else: print('I (%s) just created a child process (%s).' % (os.getpid(), pid)) #结果 Process (876) start... I (876) just created a child process (877). I am child process (877) and my parent is 876.
由于Mac系统是基于BSD(Unix的一种)内核,所以,在Mac下运行是没有问题的,在Windows上,使用
multiprocessing
multiprocessing模块提供了一个Process类来代表一个进程对象
from multiprocessing import Process import os # 子进程要执行的代码 def run_proc(name): print('Run child process %s (%s)...' % (name, os.getpid())) if __name__=='__main__': print('Parent process %s.' % os.getpid()) #child p = Process(target=run_proc, args=('test',)) p.start() #join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步 p.join() #结果如下 Parent process 928. Run child process test (929)...
如果要启动大量的子进程,可以用进程池的方式批量创建子进程
Pool
from multiprocessing import Pool import os, time, random def long_time_task(name): print('Run task %s (%s)...' % (name, os.getpid())) start = time.time() time.sleep(random.random() * 3) end = time.time() print('Task %s runs %0.2f seconds.' % (name, (end - start))) if __name__=='__main__': print('Parent process %s.' % os.getpid()) #同时跑进程的个数,Pool的默认大小是CPU的核数 p = Pool(4) for i in range(5): p.apply_async(long_time_task, args=(i,)) print('Waiting for all subprocesses done...') p.close() #等待所有子进程执行完毕,用之前必用close p.join() print('All subprocesses done.') #结果 Parent process 669. Waiting for all subprocesses done... Run task 0 (671)... Run task 1 (672)... Run task 2 (673)... Run task 3 (674)... Task 2 runs 0.14 seconds. Run task 4 (673)... Task 1 runs 0.27 seconds. Task 3 runs 0.86 seconds. Task 0 runs 1.41 seconds. Task 4 runs 1.91 seconds. All subprocesses done.
子进程
很多时候,子进程并不是自身,而是一个外部进程。我们创建了子进程后,还需要控制子进程的输入和输出。
subprocess
import subprocess print('$ nslookup www.python.org') r = subprocess.call(['nslookup', 'www.python.org']) print('Exit code:', r) #运行结果: $ nslookup www.python.org Server: 192.168.19.4 Address: 192.168.19.4#53 Non-authoritative answer: www.python.org canonical name = python.map.fastly.net. Name: python.map.fastly.net Address: 199.27.79.223 Exit code: 0 #如果子进程还需要输入,则可以通过communicate()方法输入 import subprocess print('$ nslookup') p = subprocess.Popen(['nslookup'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) output, err = p.communicate(b'set q=mx python.org exit ') print(output.decode('utf-8')) print('Exit code:', p.returncode) #多进程 阅读: 209404 要让Python程序实现多进程(multiprocessing),我们先了解操作系统的相关知识。 Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊。普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回。 子进程永远返回0,而父进程返回子进程的ID。这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程的ID。 Python的os模块封装了常见的系统调用,其中就包括fork,可以在Python程序中轻松创建子进程: import os print('Process (%s) start...' % os.getpid()) # Only works on Unix/Linux/Mac: pid = os.fork() if pid == 0: print('I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid())) else: print('I (%s) just created a child process (%s).' % (os.getpid(), pid)) 运行结果如下: Process (876) start... I (876) just created a child process (877). I am child process (877) and my parent is 876. 由于Windows没有fork调用,上面的代码在Windows上无法运行。由于Mac系统是基于BSD(Unix的一种)内核,所以,在Mac下运行是没有问题的,推荐大家用Mac学Python! 有了fork调用,一个进程在接到新任务时就可以复制出一个子进程来处理新任务,常见的Apache服务器就是由父进程监听端口,每当有新的http请求时,就fork出子进程来处理新的http请求。 multiprocessing 如果你打算编写多进程的服务程序,Unix/Linux无疑是正确的选择。由于Windows没有fork调用,难道在Windows上无法用Python编写多进程的程序? 由于Python是跨平台的,自然也应该提供一个跨平台的多进程支持。multiprocessing模块就是跨平台版本的多进程模块。 multiprocessing模块提供了一个Process类来代表一个进程对象,下面的例子演示了启动一个子进程并等待其结束: from multiprocessing import Process import os # 子进程要执行的代码 def run_proc(name): print('Run child process %s (%s)...' % (name, os.getpid())) if __name__=='__main__': print('Parent process %s.' % os.getpid()) p = Process(target=run_proc, args=('test',)) print('Child process will start.') p.start() p.join() print('Child process end.') 执行结果如下: Parent process 928. Process will start. Run child process test (929)... Process end. 创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动,这样创建进程比fork()还要简单。 join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。 Pool 如果要启动大量的子进程,可以用进程池的方式批量创建子进程: from multiprocessing import Pool import os, time, random def long_time_task(name): print('Run task %s (%s)...' % (name, os.getpid())) start = time.time() time.sleep(random.random() * 3) end = time.time() print('Task %s runs %0.2f seconds.' % (name, (end - start))) if __name__=='__main__': print('Parent process %s.' % os.getpid()) p = Pool(4) for i in range(5): p.apply_async(long_time_task, args=(i,)) print('Waiting for all subprocesses done...') p.close() p.join() print('All subprocesses done.') 执行结果如下: Parent process 669. Waiting for all subprocesses done... Run task 0 (671)... Run task 1 (672)... Run task 2 (673)... Run task 3 (674)... Task 2 runs 0.14 seconds. Run task 4 (673)... Task 1 runs 0.27 seconds. Task 3 runs 0.86 seconds. Task 0 runs 1.41 seconds. Task 4 runs 1.91 seconds. All subprocesses done. 代码解读: 对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。 请注意输出的结果,task 0,1,2,3是立刻执行的,而task 4要等待前面某个task完成后才执行,这是因为Pool的默认大小在我的电脑上是4,因此,最多同时执行4个进程。这是Pool有意设计的限制,并不是操作系统的限制。如果改成: p = Pool(5) 就可以同时跑5个进程。 由于Pool的默认大小是CPU的核数,如果你不幸拥有8核CPU,你要提交至少9个子进程才能看到上面的等待效果。 子进程 很多时候,子进程并不是自身,而是一个外部进程。我们创建了子进程后,还需要控制子进程的输入和输出。 subprocess模块可以让我们非常方便地启动一个子进程,然后控制其输入和输出。 下面的例子演示了如何在Python代码中运行命令nslookup www.python.org,这和命令行直接运行的效果是一样的: import subprocess print('$ nslookup www.python.org') r = subprocess.call(['nslookup', 'www.python.org']) print('Exit code:', r) 运行结果: $ nslookup www.python.org Server: 192.168.19.4 Address: 192.168.19.4#53 Non-authoritative answer: www.python.org canonical name = python.map.fastly.net. Name: python.map.fastly.net Address: 199.27.79.223 Exit code: 0 如果子进程还需要输入,则可以通过communicate()方法输入: import subprocess print('$ nslookup') p = subprocess.Popen(['nslookup'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) output, err = p.communicate(b'set q=mx python.org exit ') print(output.decode('utf-8')) print('Exit code:', p.returncode) #上面的代码相当于在命令行执行命令nslookup,然后手动输入: set q=mx python.org exit #结果 $ nslookup Server: 192.168.19.4 Address: 192.168.19.4#53 Non-authoritative answer: python.org mail exchanger = 50 mail.python.org. Authoritative answers can be found from: mail.python.org internet address = 82.94.164.166 mail.python.org has AAAA address 2001:888:2000:d::a6 Exit code: 0
进程间通信
Process
之间肯定是需要通信的,Python的multiprocessing
模块包装了底层的机制,提供了Queue
、Pipes
等多种方式来交换数据。
以Queue
为例,在父进程中创建两个子进程,一个往Queue
里写数据,一个从Queue
里读数据:
from multiprocessing import Process, Queue import os, time, random # 写数据进程执行的代码: def write(q): print('Process to write: %s' % os.getpid()) for value in ['A', 'B', 'C']: print('Put %s to queue...' % value) q.put(value) time.sleep(random.random()) # 读数据进程执行的代码: def read(q): print('Process to read: %s' % os.getpid()) while True: value = q.get(True) print('Get %s from queue.' % value) if __name__=='__main__': # 父进程创建Queue,并传给各个子进程: q = Queue() pw = Process(target=write, args=(q,)) pr = Process(target=read, args=(q,)) # 启动子进程pw,写入: pw.start() # 启动子进程pr,读取: pr.start() # 等待pw结束: pw.join() # pr进程里是死循环,无法等待其结束,只能强行终止: pr.terminate() #运行结果如下: Process to write: 50563 Put A to queue... Process to read: 50564 Get A from queue. Put B to queue... Get B from queue. Put C to queue... Get C from queue.