• Gym 100952 D. Time to go back(杨辉三角形)


    D - Time to go back

     Gym - 100952D 

    http://codeforces.com/gym/100952/problem/D

    D. Time to go back
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You have been out of Syria for a long time, and you recently decided to come back. You remember that you have M friends there and since you are a generous man/woman you want to buy a gift for each of them, so you went to a gift store that have N gifts, each of them has a price.

    You have a lot of money so you don't have a problem with the sum of gifts' prices that you'll buy, but you have K close friends among your M friends you want their gifts to be expensive so the price of each of them is at least D.

    Now you are wondering, in how many different ways can you choose the gifts?

    Input

    The input will start with a single integer T, the number of test cases. Each test case consists of two lines.

    the first line will have four integers N, M, K, D (0  ≤  N, M  ≤  200, 0  ≤  K  ≤  50, 0  ≤  D  ≤  500).

    The second line will have N positive integer number, the price of each gift.

    The gift price is  ≤  500.

    Output

    Print one line for each test case, the number of different ways to choose the gifts (there will be always one way at least to choose the gifts).

    As the number of ways can be too large, print it modulo 1000000007.

    Examples
    Input
    2
    5 3 2 100
    150 30 100 70 10
    10 5 3 50
    100 50 150 10 25 40 55 300 5 10
    Output
    3
    126


    题意:T组样例,每组样例第一行n个价格,m个好友,k个亲密好友,亲密好友最小的价格是d,第二行是这n个价格
    思路:就是排列组合嘛,关键是求组合数,在这里我开始的话是写了一个函数求,最后发现过不了,因为数据太大,精度会出现问题,所以我们要用到杨辉三角形
    yanghui[i][j]=(vis[i-1][j-1])+((vis[i-1][j])
    代码如下:

    #include<iostream>
    #include<algorithm>
    #include<string.h>
    using namespace std;
    int a[205];
    #define MOD 1000000007
    long long sum,vis[210][210];
    int aa(int n,int m)
    {
    if(m==0)
    return 1;
    int s=1,g=1;
    for(int i=n;i>=n-m+1;i--)
    s*=i;
    for(int i=1;i<=m;i++)
    g*=i;
    return s/g;
    }
    int main()
    {

    for(int i=0;i<210;i++)
    {
    vis[i][0]=1;
    for(int j=1;j<=i;j++)
    {
    vis[i][j]=(((vis[i-1][j-1])%MOD)+((vis[i-1][j])%MOD))%MOD;
    }
    }
    int t;
    cin>>t;
    while(t--)
    {
    int n,m,k,d,xia=0,shang=0;
    cin>>n>>m>>k>>d;
    memset(a,0,sizeof(a));
    for(int i=0;i<n;i++)
    {

    cin>>a[i];
    if(a[i]>=d)
    xia++;
    else
    shang++;
    }
    int i=0;

    sum=0;


    while(xia-i>=k)
    {
    if(m-xia+i>=0)
    {

    sum=(sum+(vis[xia][xia-i]*vis[shang][m-xia+i])%MOD)%MOD; }
    i++;

    }


    cout<<sum<<endl;
    }
    }

  • 相关阅读:
    redis数据结构详解之Hash(四)
    Redis数据结构详解之Set(三)
    Redis数据结构详解之List(二)
    Redis数据结构详解(一)
    memcached安装及.NET中的Memcached.ClientLibrary使用详解
    Quartz.net开源作业调度框架使用详解
    quartz.net 时间表达式----- Cron表达式详解
    MongoDB高级查询详细
    MongoDB下载安装与简单增删改查
    MSSQLSERVER添加c# clr程序集的使用方法
  • 原文地址:https://www.cnblogs.com/xiechenxi/p/fsaffaFAd.html
Copyright © 2020-2023  润新知