• Java 中的 syncronized 你真的用对了吗


    生活中随处可见并行的例子,并行 顾名思义就是一起进行的意思,同样的程序在某些时候也需要并行来提高效率,在上一篇文章中我们了解了 Java 语言对缓存导致的可见性问题、编译优化导致的顺序性问题的解决方法,下面我们就来看看 Java 中解决因线程切换导致的原子性问题的解决方案 -- 锁 。

    说到锁我们并不陌生,日常工作中也可能经常会用到,但是我们不能只停留在用的层面上,为什么要加锁,不加锁行不行,不行的话会导致哪些问题,这些都是在使用加锁语句时我们需要考虑的。

    来看一个使用 32 位的 CPU 写 long 型变量需不需要加锁的问题:

    我们知道 long 型变量长度为 64 位,在 32 位 CPU 上写 long 型变量至少需要拆分成 2 个步骤:一次写 高 32 位,一次写低 32 位。

    对于单核 CPU 来说,同一时刻只有一个线程在执行,禁止 CPU 中断就意味着禁止线程切换,获得 CPU 使用权的这个线程就会一直运行,所以 2 次写操作要么同时都被执行,要么都不被执行,单核 CPU 是保证原子性的。

    对于多核 CPU,同一时刻,一个线程在 CPU-1 上运行,另一个线程在 CPU-2 上运行,此时禁止 CPU 切换,只能保证 CPU 上有线程运行,并不能保证同一时刻只有一个线程运行,如果两个线程同时都在写高位,那么得出的结果可就不正确了。

     所以,互斥修改共享变量这个条件非常重要,也就是说同一时刻只有一个线程在修改共享变量,只要保证这个条件,不论单核还是多核,操作就都是原子性的了。

    一说到互斥、原子性,我们马上就想到了代码加锁,没错加锁是正确的选择,但是怎么加呢? 要想知道怎么加锁,首先我们要知道加锁锁的是什么以及我们想要保护的资源是什么,看下图说说锁的是什么,要保护的是什么呢?

          图中锁的 M 资源,保护的也是 M 资源。

    程序中的锁与现实中的锁也是类似的,每一把锁都有自己要保护的资源,这是至关重要的,如图保护资源 M 的锁为 LM,就像我家大门的锁保护我家,你家大门的锁保护你家一样,如果程序出现类似我家大门锁保护你家的情况,那么就会导致诡异的并发问题了。

    了解了锁的是什么与保护的是什么之后,我们看看怎么加锁的问题,还是用 count += 1 的例子,看代码:

    复制代码
    class Test{
      long value = 0L;
      long get() {
        return value;
      }
      synchronized void addOne() {
        value += 1;
      }
    }
    复制代码
    
    

    分析一下,这段代码中锁的是当前对象,要保护的资源是对象中的成员属性 value,这样的加锁方式开启10 个线程分别调用 10000次 addOne()方法,我们预期的结果是 value 最终会达到 100000,结果如何呢 ?

    经过测试,addOne() 不加 synchronized 结果会出现小于 100000 的情况,加上 synchronized 结果符合我们的预期,针对测试结果,简要分析如下:

    加锁之后,线程之间是互斥的,也就是说同一时刻只有一个线程执行,这样就原子性可以保证了。

    那么可见性呢?一个线程操作结束后另一个线程能获取到上一个线程的操作结果吗?答案是肯定的,这就跟我们上一章说的 happen before 原则联系到一起了,“一个锁的解锁操作对另一个锁的加锁操作是可见的”,再结合传递性规则,一个锁在解锁前,对共享变量的修改,即解锁前对共享变量修改 happen before 于 这个锁的解锁,这个锁的解锁操作 happen before于另一个锁的加锁。

    所以,解锁前对共享变量修改happen before于另一个锁的加锁,也就是说解锁前对共享变量修改对于另一个锁的加锁是可见的。

    到这一切看似还挺完美,其实我们忽略了 get() 方法,多线程操作 get()  方法会是安全的吗?在没有任何前提操作的情况下,直接调用 get() 方法当然没问题,就是取值又不涉及修改。但是如果在执行 addOne() 方法后调用呢?显然,这时候 value 值的修改对 get()  方法是不可见的,happen before 中只说了锁的规则,这里要想保证可见性,对 get()方法也需要加上一把锁。代码如下:

    复制代码
    class Test{
      long value = 0L;
      synchronized long get() {
        return value;
      }
      synchronized void addOne() {
        value += 1;
      }
    }
    复制代码

    这里我们用同一把锁,保护了共享资源 value。说到这,我们根据资源关系来将使用锁的情况分为两种:
    1. 保护没有关系的多个资源

    2. 保护有关系的多个资源

    对于 1 的情况,由于属性之间没有关系,每个资源都用一把锁来控制,例如修改账户的密码、修改余额操作,密码与余额是没有关系的资源,分别用两把锁来控制即可,这种锁叫做细粒度锁,使用不同的锁对受保护的资源进行精细化管理,可以提升性能。

    对于 2 的情况 ,则需要粒度更大的锁去保护多个资源,看下面这段代码:

    复制代码
    class Account {
      private int balance;
      // 转账
      synchronized void transfer(
          Account target, int amt){
        if (this.balance > amt) {
          this.balance -= amt;
          target.balance += amt;
        }
      } 
    }
    复制代码
     

    乍一看,没问题,转账操作加了锁,妥妥的。其实则不然,看图就明白了:

    现在这就是"用我家锁锁了你家"的典型例子,这时候临界区有多个资源,我们应该使用更大粒度的锁,看看这样改怎么样:

    复制代码
    class Account {
      private int balance;
      // 转账
      void transfer(Account target, int amt){
        synchronized(Account.class) {
          if (this.balance > amt) {
            this.balance -= amt;
            target.balance += amt;
          }
        }
      } 
    }
    复制代码
     

    这里我们用 Account.class 作为更大粒度的锁是可行的, class 就是我们常说的 “类模板”,在 JVM 中只会加载一次,所以所有 Account 对象的类模板都是相同的,这样就能够保证用一把大锁锁住了有关系的共享资源。

    问题是解决了,仔细一想,如果用 Account.class 作为锁,那岂不是所有的转账操作都是串行了,这样肯定是不行的,生活中转账肯定也不是串行的,如果串行那效率真的是很太差了。

    正确的方式应该是这样的:

    复制代码
    class Account {
     //静态属性 替代 Account.class 作为一把大锁
      private static Object lock = new Object();
      private int balance;
      // 转账
      void transfer(Account target, int amt){
        synchronized(lock) {
          if (this.balance > amt) {
            this.balance -= amt;
            target.balance += amt;
          }
        }
      }
    复制代码
     

    这样一改,效率就上来了,问题也解决了,实际在开发中我们这也是我们最常用的加锁的方式,使用静态成员属性作为锁去保护有关系的多个资源。

    总结:

    我们从导致并发 bug 的原子性问题解决办法---加锁入手,了解了常规加锁方式背后的逻辑---锁的是什么与保护的是什么,与加锁后变量的传递性规则,到最后不同资源关系对应着不同的加锁方式---细粒度锁,粗粒度锁。

    如果想了解更多关于锁知识,请看我的这篇文章: 聊聊锁机制

  • 相关阅读:
    Codeforces 451A Game With Sticks
    POJ 3624 Charm Bracelet
    POJ 2127 Greatest Common Increasing Subsequence
    POJ 1458 Common Subsequence
    HDU 1087 Super Jumping! Jumping! Jumping!
    HDU 1698
    HDU 1754
    POJ 1724
    POJ 1201
    CSUOJ 1256
  • 原文地址:https://www.cnblogs.com/xichji/p/11553783.html
Copyright © 2020-2023  润新知