• Python3 线程/进程池 concurrent.futures


    python3之concurrent.futures一个多线程多进程的直接对接模块,python3.2有线程池了
    Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码。从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的更高级的抽象,对编写线程池/进程池提供了直接的支持。
    concurrent.futures基础模块是executor和future。
     
    Executor
    Executor是一个抽象类,它不能被直接使用。它为具体的异步执行定义了一些基本的方法。
    ThreadPoolExecutor和ProcessPoolExecutor继承了Executor,分别被用来创建线程池和进程池的代码。

    class Executor(object):
        """This is an abstract base class for concrete asynchronous executors."""
     
        def submit(self, fn, *args, **kwargs):
            raise NotImplementedError()
     
        def map(self, fn, *iterables, timeout=None):
            if timeout is not None:
                end_time = timeout + time.time()
     
            fs = [self.submit(fn, *args) for args in zip(*iterables)]
            def result_iterator():
                try:
                    for future in fs:
                        if timeout is None:
                            yield future.result()
                        else:
                            yield future.result(end_time - time.time())
                finally:
                    for future in fs:
                        future.cancel()
            return result_iterator()
     
        def shutdown(self, wait=True):
            pass
     
        def __enter__(self):
            return self
     
        def __exit__(self, exc_type, exc_val, exc_tb):
            self.shutdown(wait=True)
            return False
      
    submit()方法
    Executor中定义了submit()方法,这个方法的作用是提交一个可执行的回调task,并返回一个future实例。future对象代表的就是给定的调用。
    通过下面的例子来理解submit对线程池/进程池的操作。

    # coding: utf-8
     
    from concurrent.futures import ThreadPoolExecutor
    import time
     
     
    def return_future(msg):
        time.sleep(3)
        return msg
     
     
    # 创建一个线程池
    pool = ThreadPoolExecutor(max_workers=2)
     
    # 往线程池加入2个task
    f1 = pool.submit(return_future, 'hello')
    f2 = pool.submit(return_future, 'world')
     
    print(f1.done())
    time.sleep(3)
    print(f2.done())
     
    print(f1.result())
    print(f2.result())
      
    改写为进程池形式很简单,把ThreadPoolExecutor替换为ProcessPoolExecutor即可。如果需要提交多个task,可以通过循环多次submit()。
    map()方法
    除了submit,Exectuor还为我们提供了map方法,这个方法返回一个map(func, *iterables)迭代器,迭代器中的回调执行返回的结果有序的。可以通过下面的例子来理解:

    # coding: utf-8
     
    from concurrent.futures import ThreadPoolExecutor as Pool
    import requests
     
    URLS = ['http://www.baidu.com', 'http://qq.com', 'http://sina.com']
     
     
    def task(url, timeout=10):
        return requests.get(url, timeout=timeout)
     
     
    pool = Pool(max_workers=3)
    results = pool.map(task, URLS)
     
    for ret in results:
        print('%s, %s' % (ret.url, len(ret.content)))
      执行结果

    http://www.baidu.com/, 2381
    http://www.qq.com/, 252160
    http://www.sina.com.cn/, 607265
      
    Future
    Future可以理解为一个在未来完成的操作,这是异步编程的基础。通常情况下,我们执行io操作,访问url时(如下)在等待结果返回之前会产生阻塞,cpu不能做其他事情,而Future的引入帮助我们在等待的这段时间可以完成其他的操作。

    import requests   
     
    data = requests.get('http://www.baidu.com').content   
    print len(data)
    Future实例是由Executor.submit()创建的。Future提供了丰富的方法来处理调用。

    # coding: utf-8
    from concurrent.futures import ThreadPoolExecutor as Pool
    from concurrent.futures import as_completed
    import requests
     
    URLS = ['http://qq.com', 'http://sina.com', 'http://www.baidu.com', ]
     
     
    def task(url, timeout=10):
        return requests.get(url, timeout=timeout)
     
     
    with Pool(max_workers=3) as executor:
        future_tasks = [executor.submit(task, url) for url in URLS]
     
        for f in future_tasks:
            if f.running():
                print('%s is running' % str(f))
     
        for f in as_completed(future_tasks):
            try:
                ret = f.done()
                if ret:
                    f_ret = f.result()
                    print('%s, done, result: %s, %s' % (str(f), f_ret.url, len(f_ret.content)))
            except Exception as e:
                f.cancel()
                print(str(e))
      结果
    <Future at 0x7fc2716e1f60 state=running> is running
    <Future at 0x7fc27136d4e0 state=running> is running
    <Future at 0x7fc27136d710 state=running> is running
    <Future at 0x7fc27136d710 state=finished returned Response>, done, result: http://www.baidu.com/, 2381
    <Future at 0x7fc2716e1f60 state=finished returned Response>, done, result: http://www.qq.com/, 252343
    <Future at 0x7fc27136d4e0 state=finished returned Response>, done, result: http://www.sina.com.cn/, 602366
    从运行结果可以看出,as_completed不是按照URLS列表元素的顺序返回的。这也表明,并发访问不通的url时,没有阻塞。
    wait
    wait方法接会返回一个tuple(元组),tuple中包含两个set(集合),一个是completed(已完成的)另外一个是uncompleted(未完成的)。使用wait方法的一个优势就是获得更大的自由度,它接收三个参数FIRST_COMPLETED, FIRST_EXCEPTION和ALL_COMPLETE,默认设置为ALL_COMPLETED。

    # coding: utf-8
    from concurrent.futures import ThreadPoolExecutor as Pool
    from concurrent.futures import wait
    import requests
     
    URLS = ['http://qq.com', 'http://sina.com', 'http://www.baidu.com', ]
     
     
    def task(url, timeout=10):
        return requests.get(url, timeout=timeout)
     
     
    with Pool(max_workers=3) as executor:
        future_tasks = [executor.submit(task, url) for url in URLS]
     
        for f in future_tasks:
            if f.running():
                print('%s is running' % str(f))
     
        results = wait(future_tasks)
        done = results[0]
        for x in done:
            print(x)
      wait有timeout和return_when两个参数可以设置。
    timeout控制wait()方法返回前等待的时间。
    return_when决定方法什么时间点返回:如果采用默认的ALL_COMPLETED,程序会阻塞直到线程池里面的所有任务都完成;如果采用FIRST_COMPLETED参数,程序并不会等到线程池里面所有的任务都完成。
     
  • 相关阅读:
    Swift协议+代理
    socket编程详解
    Sublime Text 3下 Emmet 使用小技巧
    sublime text3 针对于前端开发必备的插件
    Emmet使用手册
    使用Emmet(前身Zen Coding)加速Web前端开发
    Emmet的高级功能与使用技巧
    RSS订阅推荐
    UIView中常见的方法总结
    技术博客rss订阅源收集
  • 原文地址:https://www.cnblogs.com/xibuhaohao/p/10345353.html
Copyright © 2020-2023  润新知