• 数据结构复习之【树】


     

    名词解释 

    树这个数据结构用到了递归的概念:树的子树还是树;

    :节点的子树个数;

    树的度:树中任意节点的度的最大值;

    兄弟:两节点的parent相同;

    :根在第一层,以此类推;

    高度:叶子节点的高度为1,根节点高度最高;

    有序树:树中各个节点是有次序的;

    森林:多个树组成;


    树的表示法

    1.双亲表示法:每个节点存储:数据、parent在数组中的下标;

    2.孩子表示法:全部节点组成一个数组,每个数组指向一个单链表,存放其孩子;如下图:



    3.双亲孩子表示法


    4.孩子兄弟表示法



    此种方法的好处在于一个多叉树能够转换成一颗二叉树,是树转换成二叉树的好办法;


    线性表是树的特殊情况;

    斜树:所有节点只有左节点或右节点;比如:



    满二叉树:叶子节点一定要在最后一层,并且所有非叶子节点都存在左孩子和右孩子;

    完全二叉树:从左到右、从上到下构建的二叉树;比如:



    性质

    1.第i层至多有麦库截图20121126112139458.jpg个节点;

    2.深度为k的树最多有2^k -1个节点;

    3.任意二叉树,度为0的节点数=度为2的节点数+1;

    4.如果i为父亲的编号,则孩子的编号为2i和2i+1;

    5.如果孩子的编号为k,则父亲的编号为floor(k/2);



    二叉树的存储结构

    (1)顺序存储:只适用于完全二叉树;


    (2)链式存储:最通用的存储方法;


    但是这样很浪费空间,因为会有很多空指针(如果有n个节点,则有2n个left、right指针,但是用到的只有n-1个指针)

    改进:线索二叉树:将空指针链接到前驱或后继节点;(此处前驱和后继是按照中序遍历上讲的)

    节点数据结构如下图:



    比如:


    一般构造线索二叉树的过程步骤如下:

    (1)构造一般二叉树;

    (2)遍历二叉树的同时,建立线索二叉树;


    二叉树的遍历

    (1)前序遍历:先双亲、再左孩子、最后右孩子;

    (2)中序遍历:先左孩子、再双亲、最后右孩子;

    (3)后序遍历:先左孩子、再右孩子、最后双亲;

    (4)层次遍历:一层一层,从左到右、从上到下遍历;

    注意:

    (1)已知前序、后序遍历结果,不能推导出一棵确定的树;

    (2)已知前序、中序遍历结果,能够推导出后序遍历结果;

    (2)已知后序、中序遍历结果,能够推导出前序遍历结果;

    扩展二叉树

    对于一般二叉树的扩充,为了能够通过一个遍历序列建立二叉树,扩展二叉树如图所示:


    如果存在遍历序列:AB##C##,则可以很容易的建立二叉树;

    此种方式很方便,因为一般来说都需要三种遍历方式中的两种才可以确定一个二叉树;


    树、森林、二叉树的转换

    树-->二叉树

    根据兄弟孩子表示法进行转换;

     


    森林-->二叉树

     


     二叉树-->树


     二叉树-->森林

     



    Huffman编码


    Huffman是一种前缀编码;

    Huffman编码是建立在Huffman树的基础上进行的,因此为了进行Huffman编码,必须先构建Huffman树;

    树的路径长度是每个叶节点到根节点的路径之和;

    带权路径长度是(每个叶节点的路径长度*wi)之和;

    Huffman树是最小带权路径长度的二叉树;

    构造Huffman树的过程:

    (1)将各个节点按照权重从小到大排序;

    (2)去最小权重的两个节点,并新建一个父节点作为这两个节点的双亲,双亲节点的权重为子节点权重之和,再将此父节点放入原来的队列;

    (3)重复(2)的步骤,直到队列中只有一个节点,此节点为根节点;




    构造完Huffman树之后,就可以进行Huffman编码了,编码规则:

    (1)左分支填0,右分支填1;



    Huffman解码过程

    (1)给定一个01串,将01串进行Huffman树,到叶子节点了就表明已经解码一个节点,然后再次遍历Huffman树;




    作者:xiazdong
    出处:http://blog.xiazdong.info
    本文版权归作者所有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。
  • 相关阅读:
    SPAN和DIV的区别
    利用XMLHTTP无刷新添加数据之Post篇
    在Asp.net中上传大文件的解决方法
    在事务中执行批量复制操作
    Microsoft Visual SourceSafe 使用指南
    恢复只有MDF文件的MS SQL数据库
    配置sql server 2000以允许远程访问
    转: Bill Gates 哈佛大学毕业典礼演讲1
    用于对数据库进行操作的类库经验的总结
    用于对数据库进行操作的类库经验的总结 (二)
  • 原文地址:https://www.cnblogs.com/xiazdong/p/3058067.html
Copyright © 2020-2023  润新知