• Mysql主从基本原理,以及读写分离导致主库从库数据不一致问题


      1、Mysql的主从同步就是当master(主库)发生数据变化的时候,会实时同步到slave(从库)。

      2、主从复制可以水平扩展数据库的负载能力,容错,高可用,数据备份。

      3、不管是delete、update、insert,还是创建函数、存储过程,都是在master上,当master有操作的时候,slace会快速的接受到这些操作,从而做同步。

      主要的实现原理:

            1、在master机器上,主从同步时间会被写道特殊的log文件中(binary-log);

            2、在slave机器上,slave读取主从同步事件,并根据读取的事件变化,在slave库上做相应的更改。

      详细的主从同步主要有三种形式:statement、row、mixed

            1、statement:会将对数据库操作的sql语句写道binlog中

            2、row:会将每一条数据的变化写道binlog中。

            3、mixed:statement与row的混合。Mysql决定什么时候写statement格式的,什么时候写row格式的binlog。

        在master机器上的操作:

          当master上的数据发生变化的时候,该事件变化会按照顺序写入binlog中。当slave链接到master的时候,master机器会为slave开启binlog dunp线程。当master的binlog发生变化的时候,binlog dump线程会通知slave,并将相应的binlog内容发送给slave。

        在slave机器上操作:

          当主从同步开启的时候,slave上会创建两个线程:IO线程。该线程连接到master机器,master机器上的binlog dump 线程会将binlog的内容发送给该IO线程。该I/O线程接收到binlog内容后,再将内容写入到本地的relay log;sql线程。该线程读取到I/O线程写入的ralay log。并且根据relay log。并且根据relay log 的内容对slave数据库做相应的操作。

      4、mysql数据库从库同步的延迟问题

        首先在服务器上执行show slave satus;可以看到很多同步的参数: 

    Master_Log_File:                      SLAVE中的I/O线程当前正在读取的主服务器二进制日志文件的名称
    Read_Master_Log_Pos:        在当前的主服务器二进制日志中,SLAVE中的I/O线程已经读取的位置
    Relay_Log_File:                        SQL线程当前正在读取和执行的中继日志文件的名称
    Relay_Log_Pos:                        在当前的中继日志中,SQL线程已读取和执行的位置
    Relay_Master_Log_File:      由SQL线程执行的包含多数近期事件的主服务器二进制日志文件的名称
    Slave_IO_Running:                 I/O线程是否被启动并成功地连接到主服务器上
    Slave_SQL_Running:              SQL线程是否被启动
    Seconds_Behind_Master:     从属服务器SQL线程和从属服务器I/O线程之间的时间差距,单位以秒计。
    从库同步延迟情况出现的
    1、show slave status显示参数Seconds_Behind_Master不为0,这个数值可能会很大
    2、show slave status显示参数Relay_Master_Log_File和Master_Log_File显示bin-log的编号相差很大,说明bin-log在从库上没有及时同步,所以近期执行的bin-log和当前IO线程所读的bin-log相差很大
    3、mysql的从库数据目录下存在大量mysql-relay-log日志,该日志同步完成之后就会被系统自动删除,存在大量日志,说明主从同步延迟很厉害
    
    a、MySQL数据库主从同步延迟原理
    mysql主从同步原理:
    主库针对写操作,顺序写binlog,从库单线程去主库顺序读”写操作的binlog”,从库取到binlog在本地原样执行(随机写),来保证主从数据逻辑上一致。
    mysql的主从复制都是单线程的操作,主库对所有DDL和DML产生binlog,binlog是顺序写,所以效率很高,slave的Slave_IO_Running线程到主库取日志,效率比较高,下一步,问题来了,slave的Slave_SQL_Running线程将主库的DDL和DML操作在slave实施。DML和DDL的IO操作是随即的,不是顺序的,成本高很多,还可能可slave上的其他查询产生lock争用,由于Slave_SQL_Running也是单线程的,所以一个DDL卡主了,需要执行10分钟,那么所有之后的DDL会等待这个DDL执行完才会继续执行,这就导致了延时。
    有朋友会问:“主库上那个相同的DDL也需要执行10分,为什么slave会延时?”,答案是master可以并发,Slave_SQL_Running线程却不可以。
    
    b、 MySQL数据库主从同步延迟是怎么产生的?
    当主库的TPS并发较高时,产生的DDL数量超过slave一个sql线程所能承受的范围,那么延时就产生了,当然还有就是可能与slave的大型query语句产生了锁等待。
    首要原因:数据库在业务上读写压力太大,CPU计算负荷大,网卡负荷大,硬盘随机IO太高
    次要原因:读写binlog带来的性能影响,网络传输延迟。
    
    c、 MySQL数据库主从同步延迟解决方案。
    
    架构方面
    1.业务的持久化层的实现采用分库架构,mysql服务可平行扩展,分散压力。
    2.单个库读写分离,一主多从,主写从读,分散压力。这样从库压力比主库高,保护主库。
    3.服务的基础架构在业务和mysql之间加入memcache或者redis的cache层。降低mysql的读压力。
    4.不同业务的mysql物理上放在不同机器,分散压力。
    5.使用比主库更好的硬件设备作为slave
    
    总结,mysql压力小,延迟自然会变小。
    
    硬件方面
    
    1.采用好服务器,比如4u比2u性能明显好,2u比1u性能明显好。
    2.存储用ssd或者盘阵或者san,提升随机写的性能。
    3.主从间保证处在同一个交换机下面,并且是万兆环境。
    总结,硬件强劲,延迟自然会变小。一句话,缩小延迟的解决方案就是花钱和花时间。
    
    mysql主从同步加速
    
    1、sync_binlog在slave端设置为0
    2、–logs-slave-updates 从服务器从主服务器接收到的更新不记入它的二进制日志。
    3、直接禁用slave端的binlog
    4、slave端,如果使用的存储引擎是innodb,innodb_flush_log_at_trx_commit =2
    
    从文件系统本身属性角度优化
    master端
    修改linux、Unix文件系统中文件的etime属性, 由于每当读文件时OS都会将读取操作发生的时间回写到磁盘上,对于读操作频繁的数据库文件来说这是没必要的,只会增加磁盘系统的负担影响I/O性能。可以通过设置文件系统的mount属性,组织操作系统写atime信息,在linux上的操作为:
    打开/etc/fstab,加上noatime参数
    /dev/sdb1 /data reiserfs noatime 1 2
    然后重新mount文件系统
    #mount -oremount /data
    
    PS:
    主库是写,对数据安全性较高,比如sync_binlog=1,innodb_flush_log_at_trx_commit = 1 之类的设置是需要的
    而slave则不需要这么高的数据安全,完全可以讲sync_binlog设置为0或者关闭binlog,innodb_flushlog也可以设置为0来提高sql的执行效率
    1、sync_binlog=1 o
    MySQL提供一个sync_binlog参数来控制数据库的binlog刷到磁盘上去。
    默认,sync_binlog=0,表示MySQL不控制binlog的刷新,由文件系统自己控制它的缓存的刷新。这时候的性能是最好的,但是风险也是最大的。一旦系统Crash,在binlog_cache中的所有binlog信息都会被丢失。
    如果sync_binlog>0,表示每sync_binlog次事务提交,MySQL调用文件系统的刷新操作将缓存刷下去。最安全的就是sync_binlog=1了,表示每次事务提交,MySQL都会把binlog刷下去,是最安全但是性能损耗最大的设置。这样的话,在数据库所在的主机操作系统损坏或者突然掉电的情况下,系统才有可能丢失1个事务的数据。
    但是binlog虽然是顺序IO,但是设置sync_binlog=1,多个事务同时提交,同样很大的影响MySQL和IO性能。
    虽然可以通过group commit的补丁缓解,但是刷新的频率过高对IO的影响也非常大。对于高并发事务的系统来说,
    “sync_binlog”设置为0和设置为1的系统写入性能差距可能高达5倍甚至更多。
    所以很多MySQL DBA设置的sync_binlog并不是最安全的1,而是2或者是0。这样牺牲一定的一致性,可以获得更高的并发和性能。
    默认情况下,并不是每次写入时都将binlog与硬盘同步。因此如果操作系统或机器(不仅仅是MySQL服务器)崩溃,有可能binlog中最后的语句丢失了。要想防止这种情况,你可以使用sync_binlog全局变量(1是最安全的值,但也是最慢的),使binlog在每N次binlog写入后与硬盘同步。即使sync_binlog设置为1,出现崩溃时,也有可能表内容和binlog内容之间存在不一致性。
    
    2、innodb_flush_log_at_trx_commit (这个很管用)
    抱怨Innodb比MyISAM慢 100倍?那么你大概是忘了调整这个值。默认值1的意思是每一次事务提交或事务外的指令都需要把日志写入(flush)硬盘,这是很费时的。特别是使用电池供电缓存(Battery backed up cache)时。设成2对于很多运用,特别是从MyISAM表转过来的是可以的,它的意思是不写入硬盘而是写入系统缓存。
    日志仍然会每秒flush到硬 盘,所以你一般不会丢失超过1-2秒的更新。设成0会更快一点,但安全方面比较差,即使MySQL挂了也可能会丢失事务的数据。而值2只会在整个操作系统 挂了时才可能丢数据。
    
    3、ls(1) 命令可用来列出文件的 atime、ctime 和 mtime。
    atime 文件的access time 在读取文件或者执行文件时更改的
    ctime 文件的create time 在写入文件,更改所有者,权限或链接设置时随inode的内容更改而更改
    mtime 文件的modified time 在写入文件时随文件内容的更改而更改
    ls -lc filename 列出文件的 ctime
    ls -lu filename 列出文件的 atime
    ls -l filename 列出文件的 mtime
    stat filename 列出atime,mtime,ctime
    atime不一定在访问文件之后被修改
    因为:使用ext3文件系统的时候,如果在mount的时候使用了noatime参数那么就不会更新atime信息。
    这三个time stamp都放在 inode 中.如果mtime,atime 修改,inode 就一定会改, 既然 inode 改了,那ctime也就跟着改了.
    之所以在 mount option 中使用 noatime, 就是不想file system 做太多的修改, 而改善读取效能



  • 相关阅读:
    java实现验证码功能
    C# 自动注册OCX方法
    wamp出现You don’t have permission to access/on this server提示
    C# 图像旋转代码
    C# 实现图像快速 水平 垂直 翻转
    C#创建Graphics对象的方法
    winform控件大小改变是防止背景重绘导致的闪烁(转载)
    C#中DataTable中Rows.Add 和 ImportRow 对比
    MongoDb C# 驱动操作示例
    解决c#所有单线程单元(STA)线程都应使用泵式等待基元(如 CoWaitForMultipleHandles),并在运行时间很长的操作过程中定期发送消息。 转载
  • 原文地址:https://www.cnblogs.com/xiaoyuanren/p/7887451.html
Copyright © 2020-2023  润新知